The effect of Er:YAG laser irradiation on the surface microstructure and roughness of hydroxyapatite-coated implant.
10.5051/jpis.2010.40.6.276
- Author:
Seong Won KIM
1
;
Young Hyuk KWON
;
Jong Hyuk CHUNG
;
Seung Il SHIN
;
Yeek HERR
Author Information
1. Department of Periodontology, Kyung Hee University School of Dentistry, Seoul, Korea. yherr@khu.ac.kr
- Publication Type:Original Article
- Keywords:
Dental implants;
Hydroxyapatite;
Lasers
- MeSH:
Dental Implants;
Durapatite;
Electrons;
Freezing
- From:Journal of Periodontal & Implant Science
2010;40(6):276-282
- CountryRepublic of Korea
- Language:English
-
Abstract:
PURPOSE: The present study was performed to evaluate the effect of erbium:yttrium-aluminium-garnet (Er:YAG) laser irradiation on the change of hydroxyapatite (HA)-coated implant surface microstructure according to the laser energy and the application time. METHODS: The implant surface was irradiated by Er:YAG laser under combination condition using the laser energy of 100 mJ/pulse, 140 mJ/pulse and 180 mJ/pulse and application time of 1 minute, 1.5 minutes and 2 minutes. The specimens were examined by surface roughness evaluation and scanning electron microscopic observation. RESULTS: In scanning electron microscope, HA-coated implant surface was not altered by Er:YAG laser irradiation under experimental condition on 100 mJ/pulse, 1 minute. Local areas with surface melting and cracks were founded on 100 mJ/pulse, 1.5 minutes and 2 minutes. One hundred forty mJ/pulse and 180 mJ/pulse group had surface melting and peeling area of HA particles, which condition was more severe depending on the increase of application time. Under all experimental condition, the difference of surface roughness value on implant surface was not statistically significant. CONCLUSIONS: Er:YAG laser on HA-coated implant surface is recommended to be irradiated below 100 mJ/pulse, 1 minute for detoxification of implant surface without surface alteration.