Development and Performance Test of Preamplifier and Amplifier for Gamma Probe.
- Author:
Jong Doo LEE
;
Hee Joung KIM
;
Jung Kyun BONG
;
Soo Il KWON
- Publication Type:Original Article
- Keywords:
Preamplifier;
Amplifier;
Nuclear Instrument Module;
Energy resolution;
Energy linearity
- MeSH:
Connecticut;
Ohio;
Optics and Photonics
- From:Korean Journal of Nuclear Medicine
1999;33(1):100-109
- CountryRepublic of Korea
- Language:Korean
-
Abstract:
PURPOSE: Preamplifier and amplifier are very important parts for developing a portable counting or imaging gamma probe. They can be used for analyzing pulses containing energy and position information for the emitted radiations. The commercial Nuclear Instrument Modules (NIMs) can be used for processing these pulses. However, it may be improper to use NIMs in developing a portable gamma probe, because of its size and high price. The purpose of this study was to develop both preamplifier and amplifier and measure their performance characteristics. MATERIALS and Methodes: The preamplifier and amplifier were designed as a charge sensitive device and a capacitor resistor-rsistor capacitor (CR-RC) electronic circuit, respectively, and they were mounted on a print circuit board (PCB). We acquired and analyzed energy spectra for Tc-99m and Cs-137 using both PCB and NIMs. Multichannel analyzer (Accuspec/A, Caberra Industries Inc., Meriden Connecticut, U.S.A) and scintillation detectors (EP-047 (Bicron Saint-Gobain/Norton Industrial EP-047 (Ceramics Co., Ohio, U.S.A) with 2"x2" NaI (T1) crystal and R1535 (Hamamatsu Photonics K.K., Electron Tube Center, Shizuoka-ken, Japan) with 1"x1"NaI (T1) crystal) were used for acquiring the energy spectra. RESULTS: Using PCB, energy resolutions or EP-047 detectors for Tc-99m and Cs-137 were 12.92% and 5.01%, respectively, whereas R1535 showed 13.75% and 5.19% of energy resolution. Using the NIM devices, energy resolutions of EP-047 detector for Tc-99m and Cs-137 were measured as 14.6% and 7.58%, respectively. However, reliable energy spectrum of R1535 detector could not be acquired, since its photomultiplier tube (PMT) requires a specific type of preamplifier. CONCLUSION: We developed a special preamplifier and amplifier suitable for a small sized gamma probe that showed good energy resolutions independent of PMT types. The RESULTS indicate that the PCB can be used in developing both counting and imaging gamma probe.