Partial Hepatectomy in Acetylation-Deficient BubR1 Mice Corroborates that Chromosome Missegregation Initiates Tumorigenesis.
10.3803/EnM.2014.29.4.561
- Author:
Yoo Kyung LEE
1
;
Inai PARK
;
Hyunsook LEE
Author Information
1. Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea. HL212@snu.ac.kr
- Publication Type:Original Article
- Keywords:
Partial hepatectomy;
Neoplasms;
Mitosis;
Hepatocytes;
Liver neoplasms;
Aneuploidy
- MeSH:
Acetylation;
Aneuploidy;
Animals;
Carcinogenesis*;
Carcinoma, Hepatocellular;
Centrosome;
Chromosomal Instability;
Hepatectomy*;
Hepatocytes;
Hydrogen-Ion Concentration;
Liver;
Liver Neoplasms;
M Phase Cell Cycle Checkpoints;
Mice*;
Mitosis
- From:Endocrinology and Metabolism
2014;29(4):561-566
- CountryRepublic of Korea
- Language:English
-
Abstract:
BACKGROUND: Aneuploidy has been suggested as one of the major causes of cancer from the time of Boveri. In support of this notion, many studies have shown that cancer cells exhibit aneuploidy. However, there are evidences that do not support the aneuploidy hypothesis. We have previously reported that the spindle assembly checkpoint protein BubR1 is acetylated in mitosis and that the acetylation of BubR1 is crucial for checkpoint maintenance and chromosome-spindle attachment. Mice heterozygous for acetylation-deficient BubR1 (K243R/+) spontaneously develop cancer with chromosome instability. As K243R/+ mice develop hepatocellular carcinoma, we set out to test if chromosome mis-segregation was the cause of their liver cancer. METHODS: Primary hepatocytes in the regenerating liver after partial hepatectomy (PH) were analyzed and compared for various mitotic parameters. RESULTS: Primary hepatocytes isolated from K243R/+ mice after PH displayed a marked increase of chromosome misalignment, accompanied by an increase of micronuclei. In comparison, the number of nuclei per cell and the centrosome numbers were not different between wild-type and K243R/+ mice. Taken together, chromosome mis-segregation provokes tumorigenesis in mouse liver. CONCLUSION: Our results corroborate that PH provides a reliable tool for assessing mitotic infidelity and cancer in mice.