- Author:
Sun Woo KANG
1
Author Information
- Publication Type:Review
- Keywords: Blood pressure; Chromogranin A; Tyrosine hydroxylase; Hypertensive renal disease; Genomics
- MeSH: Blood Pressure; Case-Control Studies; Chromogranin A; Female; Genetic Variation; Genomics; Haplotypes; Humans; Hypertension; Kidney; Kidney Diseases; Kidney Failure, Chronic; Norepinephrine; Plasmids; Regulatory Sequences, Nucleic Acid; Secretory Vesicles; Tyrosine; Tyrosine 3-Monooxygenase; Organelle Biogenesis
- From:Electrolytes & Blood Pressure 2013;11(1):24-28
- CountryRepublic of Korea
- Language:English
- Abstract: Catecholamine secretory traits were significantly heritable, as were stress-induced blood pressure changes. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. In the tyrosine hyroxylase promoter, significant associations were found for urinary catecholamine excretion and for blood pressure response to stress. TH promoter haplotype 2 (TGGG) showed pleiotropy, increasing both norepinephrine excretion and blood pressure during stress. In hypertension, 2 independent case-control studies (1,266 subjects with 53% women and 927 subjects with 24% women) replicated the effect of C-824T in the determination of blood pressure. Chromogranin A (CHGA) plays a fundamental role in the biogenesis of catecholamine secretory granules. Changes in the storage and release of CHGA in clinical and experimental hypertension prompted us to study whether genetic variation at the CHGA locus might contribute to alterations in autonomic function, and hence hypertension and its target organ consequences such as hypertensive kidney disease (nephrosclerosis). Systematic polymorphism discovery across the human CHGA locus revealed such regulatory regions as the proximal promoter and 3'-UTR. In chromaffin cell-transfected CHGA 3'-UTR and promoter/luciferase reporter plasmids, the functional consequences of the regulatory/non-coding allelic variants were documented. Variants in both the proximal promoter and the 3'-UTR displayed statistical associations with hypertension and hypertensive end stage renal disease. Therefore, I would like to review the common genetic variation in TH and CHGA as a cause of inter-individual variation in sympathetic activity, and ultimately blood pressure and hypertensive kidney disease.