Effects of Zuogui Jiangtang Yishen Formula in regulating the NLRP3/caspase-1/GSDMD signaling axis on pyroptosis in rats with diabetic kidney disease
10.1016/j.dcmed.2025.09.009
- VernacularTitle:左归降糖益肾方调控 NLRP3/caspase-1/GSDMD 信号轴对 糖尿病肾病大鼠细胞焦亡的影响
- Author:
Shujuan Hu
;
Xuhua Li
;
Yao Peng
;
Lili Chen
;
Rong Yu
;
Yajun Peng
- Publication Type:Journal Article
- Keywords:
Zuogui Jiangtang Yishen Formula (左归降糖益肾方);
Diabetic kidney disease;
NLRP3/caspase-1/GSDMD signaling axis;
Pyroptosis;
Goto-Kakizaki (GK) rats
- From:
Digital Chinese Medicine
2025;8(3):379-388
- CountryChina
- Language:English
-
Abstract:
Objective:To investigate the effects of Zuogui Jiangtang Yishen Formula (左归降糖益肾方, ZGJTYSF) in regulating the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)/caspase-1/gasdermin D (GSDMD) signaling axis on pyroptosis in rats with diabetic kidney disease (DKD).
Methods:Fifty male specific pathogen-free (SPF) grade Goto-Kakizaki (GK) rats (12 weeks old) were fed a high-fat diet for one month to establish an early DKD model. Model establishment was confirmed when fasting blood glucose (FBG) ≥ 11.1 mmol/L and urinary albumin-to-creatinine ratio (uACR) ≥ 30 mg/g. The successfully modeled early DKD rats were randomly divided by random number table into five groups (n = 10 per group): model group; dapagliflozin group (1.0 mg/kg, by gavage, served as positive control); and low-, medium-, and high-dose of ZGJTYSF groups (4.9, 9.9, and 19.9 g/kg, respectively, by gavage). Age-matched male SPF Wistar rats (n = 10) served as control group. Rats in control and model groups were gavaged with equivalent volumes of distilled water. Treatment lasted 12 weeks. Changes in uACR, FBG, and renal function were observed in all groups. Hematoxylin-eosin (HE), periodic acid-Schiff (PAS), and Masson staining were used to observe renal histopathological changes. Immunohistochemistry was performed to detect the localization and expression of caspase-1, GSDMD, and NLRP3 in rat renal tissues. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) was utilized to detect pyroptosis in renal tissues. Quantitative real-time polymerase chain reaction (qPCR) and Western blot were applied to detect mRNA and protein expression levels of NLRP3, caspase-1, GSDMD, interleukin (IL)-1β, and IL-18.
Results:Compared with model group, all doses of ZGJTYSF showed reductions in FBG, with medium- and high-dose of ZGJTYSF groups demonstrating significant decreases at week 8 and 12 (P < 0.05). For uACR, all doses of ZGJTYSF groups exhibited a decreasing trend, with high-dose of ZGJTYSF group being significantly lower than low- and medium-dose of ZGJTYSF groups at week 12 (P < 0.05) and showing no significant difference from dapagliflozin group (P > 0.05). No significant differences in renal function parameters (serum creatinine, blood urea nitrogen, and uric acid) were observed among groups (P > 0.05). Histopathological examination revealed milder glomerular and tubular lesions in both ZGJTYSF groups and dapagliflozin group, with renal pathological changes in high-dose of ZGJTYSF group resembling those in dapagliflozin group. Immunohistochemistry demonstrated significantly reduced expression of caspase-1, GSDMD, and NLRP3 in renal tissues of dapagliflozin group and high-dose of ZGJTYSF group compared with model group (P < 0.05 or P < 0.01), while the differences in low- and medium-dose of ZGJTYSF groups were not statistically significant (P > 0.05). TUNEL assay showed significantly fewer TUNEL-positive cells in renal tissues of dapagliflozin and high-dose of ZGJTYSF groups (P < 0.01), indicating a marked reduction in pyroptotic cells. Molecular analysis revealed that compared with model group, both dapagliflozin and high-dose of ZGJTYSF groups showed significantly downregulated mRNA and protein expression levels of NLRP3, caspase-1, GSDMD, IL-1β, and IL-18 in renal tissues (P < 0.01), while low- and medium-dose of ZGJTYSF groups showed downward trends without statistical significance (P > 0.05).
Conclusion:ZGJTYSF may inhibit renal pyroptosis by regulating the NLRP3/caspase-1/GSDMD signaling axis, thereby preventing and treating early renal injury in DKD and delaying the onset and progression of DKD.