Mechanism of Mingshi Prescription in Regulating Opn4-dopamine Axis to Inhibit Endoplasmic Reticulum Stress and Delay Myopia Progression
10.13422/j.cnki.syfjx.20251422
- VernacularTitle:明视方调控视黑素-多巴胺轴抑制内质网应激延缓近视进展的机制
- Author:
Baohua LI
1
;
Zefeng KANG
1
;
Lulu WANG
1
;
Xin YAN
1
;
Jianquan WANG
1
;
Xinyue HOU
1
;
Bobiao NING
2
;
Shanshan YE
1
;
Mengyu LIU
1
;
Yipeng SHI
1
;
Danyu LI
1
Author Information
1. Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
2. Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing 100010, China
- Publication Type:Journal Article
- Keywords:
myopia;
dopamine;
Opn4;
Mingshi prescription;
endoplasmic reticulum stress
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(18):58-67
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the mechanism by which Mingshi prescription regulates the retinal melanopsin-dopamine (Opn4-DA) axis in myopic mice to inhibit endoplasmic reticulum (ER) stress in the retina and sclera, thereby delaying axial elongation associated with myopia. MethodsSixty 4-week-old male SPF-grade C57BL/6J mice were randomly divided into a normal group, a form-deprived myopia group (FDM group), an intrinsically photosensitive retinal ganglion cells ablation group (ipRGCs group), a Mingshi Prescription group (MSF group, 5.2 g·kg-1), and an ipRGCs + MSF group (5.2 g·kg-1). Except for the normal group, all other groups underwent FDM modeling. Additionally, the ipRGCs and ipRGCs + MSF groups received retinal ipRGC ablation. Three weeks after modeling, the MSF and ipRGCs + MSF groups were administered Mingshi prescription via continuous gavage for six weeks. After refraction and axial length were measured in all mice, eyeballs were collected along with retinal and scleral tissues. Pathological and morphological changes in the retina, choroid, and sclera were observed using periodic acid-Schiff (PAS) staining. Western blot was employed to detect the relative protein expression levels of dopamine D1 receptor (DRD1), C/EBP homologous protein (CHOP), and glucose-regulated protein 78 (GRP78) in the retina, and CHOP and GRP78 in the sclera. Real-time PCR was used to detect the relative mRNA expression of Opn4, CHOP, and GRP78 in the retina, and CHOP and GRP78 in the sclera. Immunofluorescence staining (IF) was performed to detect the expression of Opn4 and DRD1 in retinal tissues. ResultsCompared with the normal group, the FDM group showed a significant myopic shift in refraction (P<0.05) and a significant increase in axial length (P<0.05). The retinal layers were thinner, the number of ganglion cells was reduced, and collagen fibers in the sclera were loosely arranged with evident gaps. Opn4 and DRD1 protein and mRNA expression in the retina were significantly decreased (P<0.05), while CHOP and GRP78 protein and mRNA expression in both retinal and scleral tissues were significantly increased (P<0.05). Compared with the FDM group, the ipRGCs group exhibited further increases in myopic refraction and axial length (P<0.05), more pronounced thinning and looseness in the retinal, choroidal, and scleral layers, lower expression of Opn4 and DRD1 protein and mRNA in the retina (P<0.05), and higher expression of CHOP and GRP78 protein and mRNA in the retina and sclera (P<0.05). Compared with the FDM group, the MSF group showed significantly reduced refractive error and axial length (P<0.05), with improved cellular number, arrangement, and thickness in ocular tissues, increased Opn4 and DRD1 protein and mRNA expression in the retina (P<0.05), and reduced CHOP and GRP78 protein and mRNA expression in both retina and sclera (P<0.05). Similarly, the ipRGCs + MSF group showed significant improvements in terms of the above items compared with the ipRGCs group (P<0.05). ConclusionMingshi Prescription delays myopic axial elongation and refractive progression by regulating the Opn4-DA axis in the retina of myopic mice, thereby inhibiting ER stress in the retina and sclera. This intervention promotes Qi and blood nourishment of the eyes, softens the fascia, and restores ocular rhythm.