Zuoguiwan Regulates Pdx1 Pathway to Improve Pancreas Development in Offspring of Gestational Diabetes Mellitus Model Rats
10.13422/j.cnki.syfjx.20250240
- VernacularTitle:左归丸调节Pdx1路径改善妊娠期糖尿病模型大鼠子代胰腺内分泌发育
- Author:
Wanqiu LIANG
1
;
Rang CHEN
2
;
Le ZHAO
1
;
Xiaoyi REN
1
;
Qianhui SU
1
;
Yonghui WANG
1
Author Information
1. College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China
2. Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong 030619, China
- Publication Type:Journal Article
- Keywords:
gestational diabetes mellitus;
pancreatic duodenal homeobox 1 (Pdx1);
embryo development;
pancreas;
Zuoguiwan
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(18):10-19
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo explore the mechanism by which Zuoguiwan improves the pancreas development in the gestational diabetes mellitus (GDM) model by observing the effects of Zuoguiwan on the expression of key regulatory factors in different stages of pancreas development. MethodsPregnant Wistar rats were randomly assigned into blank, model, insulin detemir (20 U·kg-1) and Zuoguiwan (1.89 g·kg-1) groups (n=18). GDM was induced by peritoneal injection of streptozotocin on day 6.5 (E6.5d) in the embryonic stage, and the blank group was given an equal volume of sodium citrate buffer. The modeling performance was assessed by measuring the blood glucose of pregnant rats. Except the blank group and model group, pregnant rats in other groups were administrated with corresponding drugs from E9.5d to delivery. The random blood glucose of pregnant rats was monitored, and the embryos and offspring rats were measured for the length and weighed on E12.5d, E18.5d and day 21 after birth (B21d). The Lee's index of rats on B21d was calculated. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the fasting insulin (FINS) levels of B22d rats and the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) was calculated. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TBIL), total cholesterol (CHO), triglyceride (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) in E18.5d pregnant rats and B22d offspring were determined. The pathological changes in the pancreas of E12.5d, E18.5d and B22d rats were observed by hematoxylin-eosin (HE) staining. Western blot was used to determine the protein levels of pancreatic duodenal homeobox 1 (Pdx1), pancreas-specific transcription factor 1a (Ptf1a), and sex-determining region Y-box protein 9 (Sox9) in the pancreas of E12.5d embryos, Pdx1, Nkx2 homeobox 2 (Nkx2.2), and hairy and enhancer of split-1 (Hes1) in the pancreas of E18.5d embryos, and Pdx1, v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa), and NK transcription factor-related homeobox gene family 6 locus 1 (Nkx6.1) in the pancreas of B22d rats. ResultsCompared with the blank group, the model group showed elevated blood glucose levels in pregnant rats on B0d, E9.5d, E12.5d, E15.5d, and E18.5d (P<0.05, P<0.01), decreased body weight and body length (P<0.01) and increased Lee's index in the offspring. In addition, the B22d offspring showed rising levels of FBG, FINS, HOMA-IR, AST, and TG (P<0.01), a declined level of HDL (P<0.01), and pancreatic acinous cells with edema and loose arrangement. The pregnant rats on E18.5d exhibited raised levels of ALT, AST, and TG (P<0.05, P<0.01) in the pancreas and a declined level of HDL (P<0.05). The E12.5d embryos showed up-regulated protein levels of Pdx1, Sox9, and Ptf1a in the pancreas (P<0.01) and the E18.5d embryos exhibited down-regulated protein levels of Pdx1, Nkx2.2, and Hes1 in the pancreas (P<0.01). The protein levels of Pdx1, Nkx6.1, and Mafa in the pancreas of B22d offspring were down-regulated (P<0.01). Compared with the model group, the insulin group exhibited lowered blood glucose in pregnant rats on B0d, E15.5d, and E18.5d (P<0.05, P<0.01). The offspring in all treatment groups showcased increased body weight and body length (P<0.01) and decreased Lee's index. The B22d offspring exhibited declined levels of FBG, FINS, and HOMA-IR in the insulin group (P<0.01) and lowered levels of FBG and HOMA-IR in the Zuoguiwan group (P<0.01). The B22d offspring in all the treatment groups showed reduced levels of ALT, AST, TBIL, CHO, TG, and LDL, a raised level of HDL, and alleviated edema of pancreatic acinous cells. The pregnant rats on E18.5d demonstrated declined levels of TG and ALT (P<0.05, P<0.01) and an elevated level of HDL (P<0.05). The pancreas of E12.5d embryos presented down-regulated protein levels of Pdx1 and Sox9 and an up-regulated protein level of Ptf1a in the insulin group (P<0.05). The pancreas of E12.5d embryos in the Zuoguiwan group presented down-regulated protein levels of Pdx1, Sox9, and Ptf1a (P<0.01). All the treatment groups showed up-regulated protein levels of Pdx1, Nkx2.2, and Hes1 in the pancreas of E18.5d embryos (P<0.01) and Pdx1, Nkx6.1, and Mafa in the pancreas of B22d embryos (P<0.05, P<0.01). ConclusionZuoguiwan can promote the growth and development and ameliorate the pathological changes in the pancreas of the offspring of GDM model by regulating the expression of Pdx1 pathway-related regulatory factors in different stages of pancreas development.