Shenxiao Tongluo Prescription Alleviates Kidney Injury in Diabetic Rats via PGC-1α/SIRT3/HIF-1α Pathway
10.13422/j.cnki.syfjx.20250902
- VernacularTitle:基于PGC-1α/SIRT3/HIF-1α信号通路探讨肾消通络方对糖尿病大鼠肾脏损伤的作用机制
- Author:
Cangcang XU
1
;
Xianbing GUO
1
;
Guang LI
1
;
Wenhao JIAO
1
;
Yang ZHAO
1
;
Yingjun DING
1
Author Information
1. Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Publication Type:Journal Article
- Keywords:
diabetic nephropathy;
Shenxiao Tongluo prescription;
mitochondrial dynamics;
metabolic reprogramming
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(17):108-116
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the mechanisms of mitochondrial dynamics and metabolic reprogramming in the treatment of diabetic nephropathy (DN) by Shenxiao Tongluo prescription via the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/sirtuin-3 (SIRT3)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway. MethodsSixty-five SD rats were randomized into a sham group (10 rats) and a modeling group (55 rats), and the modeling rats underwent left nephrectomy and intraperitoneal injection of streptozotocin (35 mg·kg-1) to prepare a DN model. After successful modeling, the rats were randomized into model, empagliflozin (10 mg·kg-1), and low-, medium-, and high-dose (7.656, 15.312, 30.624 g·kg-1, respectively) Shenxiao Tongluo prescription groups. The urine microalbumin (UmAlb), blood urea nitrogen (BUN), and serum creatinine (SCr) levels of rats in each group were assessed after continuous gavage for 8 weeks. The corresponding kits were used to measure the levels of lactate, superoxide dismutase (SOD), and malondialdehyde (MDA) in the kidney tissue. Hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff staining were performed to observe the pathological changes in the kidney tissue. Transmission electron microscopy was employed to observe mitochondrial morphology. Immunohistochemistry was employed to determine the expression levels of dynamin-related protein 1 (DRP1) and pyruvate kinase M2 (PKM2) in the kidney tissue. Western blot was adopted to assess the protein levels of PGC-1α, SIRT3, HIF-1α, dynamin-related protein 1 (Drp1), optic atrophy 1 (OPA1), hexokinase 2 (HK2), and pyruvate kinase M2 (PKM2) in the kidney tissue. ResultsCompared with the sham group, the model group showed elevated levels of UmAlb, BUN, SCr, lactate, and MDA, decreased SOD level (P<0.05), glomerular hypertrophy, thickening of the mesangial basement membrane, vacuolar degeneration of renal tubular epithelial cells, and infiltration of renal interstitial inflammatory cells, oval mitochondria with disordered, blurred or disappearing cristae, down-regulated protein levels of PGC-1α, SIRT3, and OPA1, and up-regulated protein levels of HIF-1α, DRP1, HK2, and PKM2 (P<0.05). Compared with the model group, the treatment in all the groups increased the body weight, lowered the levels of GLU, UmAlb, BUN, and MDA, raised the level of SOD, alleviated the pathological damage in the kidney tissue and mitochondrial damage, up-regulated the expression of PGC-1α, SIRT3, and OPA1, and down-regulated the expression of HIF-1α, DRP1, and PKM2 (P<0.05). Empagliflozin and Shenxiao Tongluo prescription at medium and high doses lowered the levels of SCr and lactate and down-regulated the expression of HK2 (P<0.05), which had no statistical significance in the low-dose Shenxiao Tongluo prescription group. ConclusionShenxiao Tongluo prescription may regulate mitochondrial dynamics and metabolic reprogramming by activating the PGC-1α/SIRT3/HIF-1α pathway, thereby alleviating oxidative damage in the kidney tissue and delaying the progression of DN.