Study on mechanism of Chanbao zhichuang suppository in treating hemorrhoids based on network pharmacology and metabolomics
- VernacularTitle:基于网络药理学和代谢组学的蟾宝痔疮栓抗痔疮的机制研究
- Author:
Chunfeng GUO
1
;
Xin JIANG
2
;
Ruyang CHENG
2
;
Shumin LIU
2
;
Chunxiang XIE
3
;
Fang LU
2
Author Information
1. Dept. of TCM Internal Medicine,Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Chinese Medicine,Harbin 150040,China
2. Institute of Traditional Chinese Medicine,Heilongjiang University of Chinese Medicine,Harbin 150040,China
3. Heilongjiang Chanbao Biotechnology Development Co.,Ltd.,Heilongjiang Hegang 154100,China
- Publication Type:Journal Article
- Keywords:
Chanbao zhichuang suppository;
hemorrhoids;
arachidonic acid metabolism;
cyclooxygenase-2;
Myc proto-
- From:
China Pharmacy
2025;36(13):1622-1628
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE To explore the mechanism of improvement effect of Chanbao zhichuang suppository (CBZCS) on hemorrhoids in rats through network pharmacology and metabolomics. METHODS A hemorrhoid model was established by subcutaneous injection of rhododendron oil to induce anal swelling. SD rats were divided into blank group (NC group, 0.32 g/kg vaseline), model group (Model group, 0.32 g/kg vaseline), CBZCS low-, medium-, and high-dose groups (CBZCS-L, CBZCS- M, CBZCS-H groups, with dosages of 0.16, 0.32, and 0.64 g/kg respectively), and Mayinglong musk hemorrhoids suppository group (Positive group, 0.32 g/kg), with 9 rats in each group. Anal administration was performed at 6, 12, 24, 48, and 72 hours after modeling. After the last administration, the pathological changes of the anal tissues in rats were observed, and the serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in rats were detected. Differential metabolite analysis and enrichment analysis were conducted by metabolomics methods, and the target proteins of CBZCS in treating hemorrhoids were obtained by network pharmacology. The core metabolic pathways were screened by interaction and enrichment analysis of differential metabolites and proteins, and the core proteins were experimentally verified. RESULTS Compared with the NC group, the anal tissues of the Model group showed obvious lesions, and the levels of IL-6 and TNF- α in the serum were significantly increased (P<0.05); compared with the Model group, the pathological damage of the anal tissues in the treatment groups was alleviated to varying degrees, and serum levels of IL-6 in CBZCS-H group, CBZCS-M group, and Positive group as well as serum levels of TNF-α in CBZCS-H group were significantly reduced (P<0.05). The metabolomics results showed that 34 differential metabolites were screened from the anal tissues of rats, and 22 of them showed a return after CBZCS administration. The differential metabolites mainly enriched in arachidonic acid metabolism, histidine metabolism, and glycerophospholipid metabolism. Through the network pharmacology, 138 intersection genes of CBZCS against hemorrhoids were determined. The analysis results showed that differential metabolites and target proteins were mainly enriched in the arachidonic acid metabolism pathway, and the regulation of this pathway might be related to cyclooxygenase-2 (COX-2), Myc proto-oncogene protein (c-MYC), cytochrome P450 1B1 (CYP1B1), interleukin-1β (IL-1β), and IL-6 protein expression. The experimental verification results showed that the expression levels of key proteins (COX-2, c-MYC, CYP1B1, IL-6, IL-1β) in the anal tissues of the Model group were significantly higher than those in the NC group (P<0.05), and the levels of the above proteins in the anal tissues of CBZCS-H group and Positive group were significantly lower than those in the Model group (P<0.05). CONCLUSIONS The mechanism of CBZCS in treating hemorrhoids may be to inhibit the expression of COX-2, c-MYC and CYP1B1 proteins, thereby inhibiting arachidonic acid metabolism and reducing the release of inflammatory factors IL-6 and IL-1β.