Mechanism of Huangqi Gegen Decoction in Treatment of Type 2 Diabetes Mellitus via Intestinal Mucosal Barrier
10.13422/j.cnki.syfjx.20250803
- VernacularTitle:基于肠黏膜屏障探讨黄芪葛根汤治疗2型糖尿病大鼠的作用机制
- Author:
Lili PENG
1
;
Miao HAO
1
;
Zhijun YANG
1
;
Yajie LIU
1
;
Hongxia YUAN
1
Author Information
1. Shanxi Key Laboratory of Innovative Drug for Treatment of Serious Diseases Basing on Chronic Inflammation,College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine,Jinzhong 030619,China
- Publication Type:Journal Article
- Keywords:
proteomics;
Huangqi Gegentang;
type 2 diabetes mellitus;
differentially expressed proteins;
intestinal barrier
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(15):1-9
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the mechanism of Huangqi Gegentang (HGT) in the treatment of type 2 diabetes mellitus (T2DM) through the application of proteomic techniques. MethodsThe rat model of T2DM was established by streptozotocin combined with a high-fat, high-sugar diet. Thirty-two male SD rats were randomized into four groups: blank, model, HGT (8.10 g·kg-1·d-1), and positive control (metformin hydrochloride, 76.5 mg·kg-1·d-1). After 6 weeks of drug intervention, the fasting blood glucose level was measured, and an oral glucose tolerance test (OGTT) was performed. The area under the curve (AUC) was calculated. Enzyme-linked immunosorbent assay was performed to assess the level of glycated hemoglobin (GHbA1c) in the serum. The limulus amebocyte lysate assay was employed to measure the serum level of lipopolysaccharide (LPS). Pathological changes in the colon were observed by hematoxylin-eosin staining. The mRNA levels of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in the colon tissue were quantified via Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). Additionally, the protein and mRNA levels of zonula occludens-1 (ZO-1), Occludin, and Claudin-1 in the colon tissue were assessed by Western blot and Real-time PCR, respectively. Label-free quantitative proteomics was employed to identify the differentially expressed proteins between the colon tissue samples from the blank, model, and HGT groups. Key proteins identified were subsequently validated by Western blot and Real-time PCR. Finally, bioinformatics analysis was conducted on the differentially expressed proteins. ResultsCompared with the blank group, the model group exhibited increased fasting blood glucose, AUC, and GHbA1c levels (P<0.01), damaged colonic mucosal epithelial structure and inflammatory cell infiltration, up-regulated mRNA levels of TNF-α, IL-6, and IL-1β in the colon and an increase in serum LPS content (P<0.05, P<0.01), and down-regulated protein and mRNA levels of ZO-1, Occludin, and Claudin-1 in the colon (P<0.01). Compared with the model group, the HGT group showed reductions in fasting blood glucose, AUC, and GHbA1c (P<0.01), alleviated damage to the colonic mucosal epithelium, down-regulated mRNA levels of TNF-α, IL-6, and IL-1β in the colon, a reduction in serum LPS content (P<0.05, P<0.01), and up-regulated protein and mRNA levels of ZO-1, Occludin, and Claudin-1 in the colon (P<0.05, P<0.01). Proteomics analysis identified 70 differentially expressed proteins that exhibited a downward trend in the model group relative to the blank group and an upward trend in the HGT group relative to the model group. These findings were corroborated by Western blot and Real-time PCR, which confirmed that the protein and mRNA levels of mucin 2 (Muc2) and transforming growth factor (TGF)-beta receptor 1 (Tgfbr1) in the colon tissue were consistent with the proteomic data. Bioinformatics analysis showed that these 70 differentially expressed proteins identified were significantly enriched in multiple signaling pathways, among which the TGF-β and advanced glycation endproduct (AGE)/receptor for advanced glycation endproduct (RAGE) signaling pathways were closely associated with damage to the intestinal mucosal barrier. This suggests that HGT may ameliorate intestinal mucosal barrier damage by regulating these pathways. ConclusionHGT potentially exerts anti-T2DM effects by influencing AGE/RAGE and TGF-β signaling pathways, thereby contributing to the restoration of the intestinal mucosal barrier.