Preparation of HA-modified emodin-contained multi-walled carbon nanotubes drug delivery system and its inhi-bitory effect on breast cancer cells
- VernacularTitle:透明质酸修饰的载大黄素多壁碳纳米管递药系统的制备及对乳腺癌细胞的抑制作用研究
- Author:
Yuduo LI
1
;
Juan DU
1
;
Yunlong LIU
1
;
Feng GENG
1
;
Xiaobing CHEN
1
Author Information
1. Dept. of Clinical Pharmacy,the Second Affiliated Hospital of Qiqihar Medical College,Qiqihar,Heilongjiang 161000,China
- Publication Type:Journal Article
- Keywords:
emodin;
multi-walled carbon nanotubes;
hyaluronic acid;
drug delivery system;
breast cancer;
inhibitory effect
- From:
China Pharmacy
2025;36(12):1463-1469
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE To prepare hyaluronic acid (HA)-modified emodin (EMD)-contained multi-walled carbon nanotubes (MWCNTs) drug delivery system (HA-MWCNTs-EMD) and explore its in vitro inhibitory effect on breast cancer cells. METHODS EMD was loaded onto MWCNTs to prepare a drug delivery system MWCNTs-EMD; subsequently, the system was further modified with HA to obtain the drug delivery system HA-MWCNTs-EMD. The two drug delivery systems mentioned above were characterized. With free EMD as the reference, the drug release in vitro of the above two drug delivery systems was investigated; the uptake of EMD by two breast cancer cells (MCF-7, MDA-MB-231 cells) was detected. The impacts of the above two drug delivery systems on the expression of surface glycoprotein differentiation group 44 (CD44), activity, apoptosis and lactate dehydrogenase (LDH) release of two breast cancer cells were detected. RESULTS The encapsulation efficiencies of MWCNTs-EMD and HA-MWCNTs-EMD were both (63.52±2.74)%, with drug loading rates of (25.01±1.83)% and (12.13± 1.96)%, particle sizes of (865.95±2.16) and (351.86±1.68) nm, polydispersity indexes of 0.54±0.02 and 0.23±0.01, and Zeta potentials of (23.87±0.14) and (-42.79±0.39) mV, respectively. The 2, 4, 6, 8, 10, 12 and 24-hour cumulative release rates of EMD in MWCNTs-EMD and HA-MWCNTs-EMD were significantly lower than those in free EMD, while the cumulative release rate of HA-MWCNTs-EMD was significantly higher than that of MWCNTs-EMD (P<0.05); the EMD uptakes of MWCNTs-EMD and HA-MWCNTs-EMD by the two types of breast cancer cells were significantly higher than their uptake of free EMD (P<0.05). Compared with the free EMD group, the MWCNTs-EMD and MWCNTs-EMD groups showed significantly higher apoptosis rate and LDH release, significantly lower surface CD44 expression (except for the MWCNTs-EMD group) and cell viability in both cell types, and the effect of HA-MWCNTs-EMD was more pronounced (P<0.05). CONCLUSIONS A novel drug delivery system HA-MWCNTs- EMD loaded with EMD is developed successfully; the drug delivery system has a certain slow-release effect, which can significantly reduce the activity of breast cancer cells, promote their apoptosis and increase the release of LDH, and the above anti- breast cancer effect is significantly stronger than that of free EMD and MWCNTs-EMD.