STING-STAT6 Signaling PathwayPromotes IL-4+ and IFN-α+ FibroticT Cell Activation and Exacerbates Scleroderma in SKG Mice
- Author:
Kun Hee LEE
1
;
Jin Seok WOO
;
Ha Yeon JEONG
;
Jeong Won CHOI
;
Chul Hwan BANG
;
Jeehee YOUN
;
Sung-Hwan PARK
;
Mi-La CHO
Author Information
- Publication Type:Original Article
- From:Immune Network 2024;24(5):e37-
- CountryRepublic of Korea
- Language:English
- Abstract: Systemic sclerosis (SS) is an autoimmune disease and pathological mechanisms of SS are unclear. In this study, we investigated the role of T cells in the progression of SS using SKG mice and humanized mice. SKG mice have a spontaneous point mutation in ZAP70. We induced scleroderma in SKG mice and a humanized SS mouse model to assess whether T cell-mediated immune responses induce SS. As a result, we found increased dermal thickness, fibrosis, and lymphocyte infiltration in skin tissue in SKG SS mice compared to BALB/c mice (control). Also, blood cytokine level, including IL-4- and IFN-α which are produced by CD4+ T cells via STIM1/STING/STAT6/IRF3 signaling pathways, were increased in SKG mice. Interestingly, skin fibrosis was reduced by inhibiting STING pathway in skin fibroblast.Next, we demonstrated the pathophysiological role of IL-4 and IFN-α in skin fibrosis using a humanized SS mouse model and found increased IL-4- and IFN-α-producing CD4+ T cells and fibrosis. In this study, we found that STING-induced production of IL-4- and type I IFN by CD4+ T cells is a key factor in mouse model and humanized mouse model of SS. Our findings suggest that the STING/STAT6/IRF3 signaling pathways are potential therapeutic targets in SS.