- Author:
Ho Jung KIM
1
Author Information
- Publication Type:Original Article
- Keywords: Hyperkalemia; Hypokalemia; Hemodialysis; Continuous ambulatory peritoneal dialysis
- MeSH: Dialysis; Dialysis Solutions; Homeostasis; Humans; Hyperkalemia; Hypokalemia; Kidney Failure, Chronic; Metabolism; Peritoneal Dialysis, Continuous Ambulatory*; Potassium; Renal Dialysis*
- From:Electrolytes & Blood Pressure 2006;4(1):47-52
- CountryRepublic of Korea
- Language:English
- Abstract: In end-stage renal disease (ESRD) patients regardless of dialysis modes, i.e. maintenance hemodialysis (HD) and continuous ambulatory peritoneal dialysis (CAPD), potassium (K) homeostasis is regulated primarily via dialysis and extrarenal K regulation in the diverse daily K intake. However, K metabolism has been known to differ greatly between the two main methods of dialysis. Hyperkalemia is a common complication (10-24%) and the most common cause of the death (3-5%) among electrolyte disorders in patients on maintenance HD. On the contrary, hypokalemia (10-36%) is responsible for a rather common complication and independent prognostic factor on CAPD. Although excessive K intake or inadequate dialysis on maintenance HD and poor nutritional K intake on CAPD are accused without doubts upto 50% of ESRD patients as a primary cause of the K-imbalance, i.e. hyperkalemia on HD and hypokalemia on CAPD, other contributory factors including certain medications and unknown causes remain still to be resolved. Accordingly, the effects of medications as another source of K-imbalance on HD with RAS blockades and beta blockers as well as those of conventional and glucose-free dialysates (Icodextrin) for internal K-redistribution on CAPD were evaluated with reviewing the literatures and our data. Furthermore, new developments in the clinical managements of hyperkalemia on HD following the exclusion of pseudohyperkalemia before the initiation of dialysis were suggested, especially, by the comparison of the effects between mono- and dual-therapy with medications for transcellular K shifting in the emergent situation. Also, the intraperitoneal K administration via conventional glucose-containing (2.5%) and glucose-free dialysates (Icodextrin) as a specific route of K-supplementation for hypokalemia on CAPD was examined for its efficiency and the degree of intracellular K shift between these two different types of dialysates.