Mechanism of Huangqi Chifengtang in Treating Atherosclerosis Based on 16S rRNA Sequencing and Metabolomics
10.13422/j.cnki.syfjx.20240718
- VernacularTitle:基于16S rRNA测序技术和代谢组学探讨黄芪赤风汤抗动脉粥样硬化的作用机制
- Author:
Yuqin LIANG
1
;
Jiaqi FU
1
;
Yunhe SHI
1
;
Fang LU
1
;
Donghua YU
1
;
Shumin LIU
1
Author Information
1. Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Publication Type:Journal Article
- Keywords:
atherosclerosis;
gut microbiota;
metabolomics;
short-chain fatty acid;
inflammation
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(13):94-103
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the mechanism of action of Huangqi Chifengtang (HQCFT) on rats with atherosclerosis (AS) by regulating the gut microbiota and their metabolites. MethodsA rat model of AS was induced through high-fat diet feeding and vitamin D3 injection, and the modeling lasted for 12 weeks. Fifty eight-week-old male SD rats were randomly divided into five groups: A blank group, a model group, a group receiving a low dose of HQCFT at 1.53 g·kg-1 (HQCFT-L group), a group receiving a high dose of HQCFT at 3.06 g·kg-1 (HQCFT-H group), and a group receiving atorvastatin calcium tablets at 1.8 mg·kg-1 (Ato group), with 10 rats in each group. Oral gavage administration started on the day after model establishment, once daily for four weeks. The efficacy of HQCFT was verified using aortic hematoxylin-eosin (HE) staining and determination of lipid levels and hemorrheology. The real-time polymerase chain reaction (Real-time PCR) was used for detecting inflammatory factor levels in the aorta, high-throughput sequencing for analyzing the gut microbiota composition in intestinal contents, targeted metabolomics for detecting short-chain fatty acid (SCFA) levels, and non-targeted metabolomics for identifying metabolomic profiles of intestinal contents. ResultsCompared with that in the blank group, the aortic tissue of rats in the model group showed significant AS lesions, including endothelial damage, inflammatory infiltration, and formation of fibrous plaques and calcified foci. Moreover, serum triacylglycerol (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels were significantly elevated (P<0.05), while high-density lipoprotein cholesterol (HDL-C) levels were significantly reduced (P<0.05). Significant increases were observed in whole blood viscosity, plasma viscosity, and the mRNA expression levels of NOD-like receptor pyrin domain containing 3 (NLRP3), Caspase-1, interleukin (IL)-β, IL-6, and tumor necrosis factor-α (TNF-α) in aortic tissue (P<0.05). Additionally, gut microbiota composition, SCFA levels, and metabolomic profiles were significantly altered. Compared with those in the model group, serum TC, TG, and LDL-C levels, as well as the whole blood viscosity and plasma viscosity, were significantly reduced in all groups treated with HQCFT (P<0.05). Significant decreases were observed in NLRP3 mRNA expression levels in all groups treated with HQCFT, Caspase-1, IL-β, and IL-6 mRNA expression levels in the HQCFT-H group, and TNF-α mRNA expression levels in the HQCFT-L group (P<0.05). HQCFT reversed the increase in the F/B ratio and dialled back the decrease in the relative abundance of Blautia and the increase in that of Desulfovibrio. HQCFT promoted the production of acetic acid, valeric acid, and propionic acid. Non-targeted metabolomics identified 39 differential metabolites, which were mainly enriched in metabolic pathways such as arachidonic acid metabolism and primary bile acid biosynthesis. ConclusionThe mechanism by which HQCFT ameliorates AS injury may be related to the improvement of dyslipidemia and body inflammatory responses by altering gut microbiota composition, promoting SCFA production, and regulating the levels of metabolites in intestinal contents.