Mechanism of Modified Shengjiangsan in Improving Diabetic Kidney Disease by Activating Mitochondrial Autophagy Based on PINK1/Parkin Signaling Pathway
10.13422/j.cnki.syfjx.20250601
- VernacularTitle:加味升降散调节PINK1/Parkin信号通路激活糖尿病肾病线粒体自噬的机制
- Author:
Jiaxin LI
1
;
Liya ZHOU
1
;
Yishuo ZHANG
2
;
Ziqiang CHEN
3
;
Yijun HOU
3
;
Jian SUN
1
Author Information
1. College of Basic Medicine,Changchun University of Chinese Medicine,Changchun 130117,China
2. College of Pharmacy,Changchun University of Chinese Medicine,Changchun 130117,China
3. College of Traditional Chinese Medicine,Changchun University of Chinese Medicine,Changchun 130117,China
- Publication Type:Journal Article
- Keywords:
modified Shengjiangsan;
diabetic kidney disease;
mitochondrial autophagy;
PTEN-induced putative kinase 1 (PINK1)/E3 ubiquitin-protein ligase (Parkin)
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(12):121-128
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the mechanism by which modified Shengjiangsan (MSJS) improves diabetic kidney disease (DKD) by activating mitochondrial autophagy. MethodsSixty SPF-grade male Sprague-Dawley rats aged 7-8 weeks were selected. A DKD model was established using a high-sugar, high-fat diet combined with intraperitoneal injection of streptozotocin (STZ). After successful modeling, the rats were randomly divided into six groups: a normal control group, a model group, low-, medium-, and high-dose MSJS groups (7.7, 15.4, 30.8 g·kg-1, respectively), and an irbesartan group (0.384 g·kg-1). Each group received either normal saline or the corresponding drug by gavage once daily for 28 consecutive days. Blood glucose, body weight, and kidney weight were recorded. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were detected using an automatic blood analyzer. Enzyme-linked immunosorbent assay (ELISA) was used to determine urinary microalbumin (mALB), and serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Histopathological changes in renal tissues were observed using hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy (TEM). The expression levels of mitochondrial autophagy-related proteins in renal tissues were analyzed by Western blot. Immunofluorescence co-localization was employed to detect the co-expression of microtubule-associated protein 1 light chain 3 beta (LC3B) and cytochrome c oxidase subunit Ⅳ (COX Ⅳ). ResultsCompared with the normal control group, the model group exhibited significant increases in renal index, blood glucose, and 24-hour urinary microalbumin (24 h mALB) (P<0.05, P<0.01). The levels of serum SCr and BUN were significantly elevated (P<0.01), and the serum levels of TNF-α, IL-1β, and IL-6 were markedly upregulated (P<0.01). Histopathological examination revealed glomerular hypertrophy, mesangial expansion and increased deposition, podocyte foot process flattening and fusion, a decreased number of autophagosomes accompanied by mitochondrial swelling, vacuolar degeneration of renal tubular epithelial cells, and inflammatory cell infiltration in the renal interstitium. The expression levels of autophagy-related proteins LC3B, PTEN-induced putative kinase 1 (PINK1), and E3 ubiquitin-protein ligase (Parkin) were significantly decreased (P<0.05, P<0.01), while expression of the selective autophagy adaptor protein p62 was significantly increased (P<0.01). Immunofluorescence signal intensity and LC3B-COX Ⅳ co-expression were both diminished. Compared with the model group, the MSJS treatment groups and the irbesartan group showed significant reductions in renal index, blood glucose, and 24 h mALB (P<0.05, P<0.01). The serum SCr and BUN levels decreased significantly (P<0.05) and TNF-α, IL-1β, and IL-6 levels were significantly downregulated (P<0.05, P<0.01). Histopathological damage was alleviated, including reduced glomerular hypertrophy, decreased mesangial deposition, and attenuated podocyte foot process fusion. The number of autophagosomes increased, and mitochondrial swelling was improved. The expression levels of LC3B, PINK1, and Parkin in renal tissues were significantly upregulated, whereas p62 expression was significantly downregulated (P<0.05, P<0.01) in MSJS groups. Immunofluorescence signal intensity was enhanced, and LC3B-COX Ⅳ co-expression was increased. ConclusionMSJS alleviates the inflammatory response in DKD rats and exerts renal protective effects by regulating the PINK1/Parkin signaling pathway and activating mitochondrial autophagy.