Research progress in the application of supercooling preservation technology in graft preservation
10.12464/j.issn.1674-7445.2025030
- VernacularTitle:过冷保存技术在移植物保存中的应用研究进展
- Author:
Heng ZHAO
1
;
Jinteng FENG
1
;
Bangrui YU
2
;
Yixing LI
1
;
Haotian BAI
1
;
Haishui HUANG
2
;
Guangjian ZHANG
1
Author Information
1. Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Enhanced Recovery after Surgery of Intergrated Chinese and Western Medicine, Xi'an 710061, China.
2. .
- Publication Type:ExpertForum
- Keywords:
Supercooling preservation;
Organ transplantation;
Ice crystal;
Cryoprotectant;
Cooling;
Rewarming;
Antifreeze protein;
Nanotechnology
- From:
Organ Transplantation
2025;16(3):394-403
- CountryChina
- Language:Chinese
-
Abstract:
Supercooling preservation technology, as a groundbreaking innovation in the field of organ preservation, significantly reduces the metabolic rate of cells and inhibits ice crystal formation by placing organs in a low-temperature environment near or below the freezing point. This technology extends the preservation time of organs and maintains their biological activity. Compared with the traditional low-temperature preservation at 4 °C, supercooling preservation effectively avoids cell damage and the accumulation of metabolic products, demonstrating significant advantages in the preservation of cells, tissues and organs. In recent years, important progress has been made in the optimization of cryoprotectants, the application of antifreeze proteins, the improvement of vitrification technology, and the development of nanotechnology-based rewarming techniques. These advancements provide new pathways to address the challenges of toxicity, ice crystal formation and uneven rewarming rates during supercooling preservation. This review summarizes the basic principles of supercooling preservation, the application of key technologies, and their practical effects in organ transplantation. It also analyzes the challenges of toxicity and rewarming efficiency, aiming to provide theoretical support and research directions for the future optimization of organ low-temperature preservation technology and its clinical application.