Urine metabolomics analysis on the improvement of pulmonary fibrosis by Danshen injection in silicosis mouse model
10.20001/j.issn.2095-2619.20241202
- VernacularTitle:尿液代谢组学分析丹参注射液对矽肺模型小鼠肺纤维化的改善作用
- Author:
Yan GAO
1
;
Hui LIU
;
Shasha PEI
;
Shuling YUE
;
Xiaodong MEI
;
Yuzhen LU
;
Xi SHEN
;
Fuhai SHEN
Author Information
1. School of Public Health, North China University of Science and Technology, Key Laboratory of Coal Mine Health and Safety in Hebei Province, Tangshan, Hebei 063000, China
- Publication Type:Journal Article
- Keywords:
Silicosis;
Fibrosis;
Danshen injection;
Urine;
Metabolomics;
Mice
- From:
China Occupational Medicine
2024;51(6):606-613
- CountryChina
- Language:Chinese
-
Abstract:
Objective To observe the effect of Danshen injection (DSI) on pulmonary fibrosis in silicosis mice, and to analyze the differential metabolic pathway on pulmonary fibrosis in silicosis using DSI by urine metabolomics. Methods The specific pathogen free C57BL/6J mice were randomly divided into control group, silicosis model group, DSI prevention group and DSI treatment group. The mice in the last three groups were given 1 mL silica suspension with a mass concentration of 50 g/L by the one-time non-exposed tracheal method, and the mice in the control group were not given any treatment. Subsequently, mice in the DSI prevention group and the DSI treatment group were given intraperitoneal injection of DSI with a dose of 5 mL/kg body weight from 24 hours after exposure to dust and from the 29th day after exposure to dust, respectively, once per day until the 56th day after exposure. Mice in the other two groups were not treated. After DSI intervention, the lung histopathological changes of mice in all groups were evaluated. The components of mouse urine metabolites were analyzed using ultra-high performance liquid chromatography-quadrupole-time-of-fight mass spectrometry method. Human Metabolome Database was used to screen the potential differential metabolites (DMs). The related metabolic pathways were analyzed using MetaboAnanlyst 5.0 Web analytics platform. Results The result of hematoxylin-eosin staining and Van Gieson staining of mouse lung tissues showed that the pulmonary alveolar structure destroyed, typical fibrotic nodules appeared, collagen fiber deposition increased, and clumpy accumulation in the silicosis model group, compared with the control group. Compared with the silicosis model group, the degree of pulmonary alveolar inflammation and fibrosis in the lung tissues of mice in the DSI prevention group was obviously reduced to close to the control group, while pulmonary alveolar inflammation and fibrosis in the lung tissues of mice in the DSI treatment group were also reduced, although the outcome was not as good as that in the DSI prevention group. The result of urine metabolomics analysis identified four DMs in the model group and control group, seven DMs were identified in the DSI prevention group and silicosis model group, seven DMs were identified in the DSI treatment group and silicosis model group. A total of three DMs pathways related to pulmonary fibrosis in silicosis model group and the protective effect of DSI prevention group were identified, including D-arginine and D-ornithine metabolism, folic acid biosynthesis and metabolism, pantothenate and succinyl coenzyme A biosynthesis pathways (all P<0.01). Conclusion DSI treatment in any time point can interfere the process of pulmonary fibrosis in the silicosis mice, while the interference is more effective in the DSI group treated right after dust-exposure. DSI interferes with the urinary metabolism pathway of silicosis mice, and the D-arginine and D-ornithine metabolism, folic acid biosynthesis and metabolism, pantothenate and succinyl coenzyme A biosynthesis pathways may participate in the inhibiting process of early pulmonary fibrosis in silicosis mice by DSI.