Effects of Tongmai Yangxin Pills (通脉养心丸) on Arrhythmia and K+/Ca2+ Channel-Related Proteins and Gene Expression in Myocardial Tissue of Ischemia-Reperfusion Model Rats
10.13288/j.11-2166/r.2025.08.016
- VernacularTitle:通脉养心丸对缺血再灌注模型大鼠心律失常及心肌组织中K+、Ca2+通道相关蛋白和基因表达的影响
- Author:
Zuoying XING
1
;
Yucai HU
1
;
Huanhuan SONG
1
;
Boyong QIU
1
;
Yankun SONG
1
;
Yongxia WANG
1
Author Information
1. First Affiliated Hospital of Henan University of Chinese Medicine,Zhengzhou,450000
- Publication Type:Journal Article
- Keywords:
arrhythmia;
ischemia-reperfusion;
Tongmai Yangxin Pills (通脉养心丸);
Potassium ion channel;
Calcium ion channel;
microRNA
- From:
Journal of Traditional Chinese Medicine
2025;66(8):851-859
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the effects and potential mechanisms of Tongmai Yangxin Pills (通脉养心丸) (TYPs) in preventing ischemia-reperfusion (I/R)-induced arrhythmia. MethodsSixty male SD rats were randomly assigned to sham operation group, model group, amiodarone group, low-dose and high-dose TYPs group, with 12 rats in each group. The sham operation group and the model group received 10 g/(kg·d) normal saline by gavage, the amiodarone group received 60 mg/(kg·d) amiodarone, and the low-dose and high-dose TMP groups received 1 g/(kg·d) and 2 g/(kg·d) TYPs solution respectively, for 21 days, administered twice daily. On the day after the last administration, the I/R model was established in the model and medication groups by ligation of the left anterior descending coronary artery with a cannula, while the sham operation group underwent the same procedure without ligation. Electrocardiogram recordings were continuously monitored throughout the modeling process. Heart rate was recorded at five time points, before ischemia (t-0), 5-10 min after ischemia (t-1), 10-15 min after ischemia (t-2), 15-30 min after ischemia (t-3), and during the first 2 min of reperfusion (t-4); the incidence of arrhythmia including ventricular premature beats (VPB), ventricular tachycardia (VT), and ventricular fibrillation (VF) was recorded; arrhythmia scores were calculated. After 24 hours of reperfusion, left ventricular myocardial tissue was collected. Hematoxylin-eosin (HE) staining was performed to observe pathological changes. RT-PCR was used to detect the mRNA expression of microRNA-1 (miRNA-1), microRNA-133a (miRNA-133a), and potassium (K+) and calcium (Ca2+) ion channel-related genes including KCND2, KCNH2, KCNE2, KCNQ1, KCNE1, KCNJ2, CACNA1C, and CACNB1. Western blot analysis was used to measure protein levels of transient outward potassium current protein (Kv4.2), rapidly activating delayed rectifier potassium current protein (HERG), slowly activating delayed rectifier potassium current protein (KvLQT1), inward rectifier potassium current protein (Kir2.1), and L-type calcium channel protein (Cav1.2). ResultsCompared with sham operation group, the model group showed diffuse myocardial hemorrhage, inflammatory cell infiltration, myocardial necrosis, nuclear pyknosis, vacuolar degeneration, and disrupted myocardial fibers; the model group also exhibited a decreased heart rate (t-1 to t-4), increased arrhythmia scores, elevated miRNA-1 and miRNA-133a expression, and decreased mRNA expression of KCND2, KCNH2, KCNE2, KCNQ1, KCNE1, KCNJ2, CACNA1C, and CACNB1 in myocardial tissue; additionally, Kv4.2, HERG, KvLQT1, Kir2.1, and Cav1.2 protein levels significantly reduced (P<0.01). Compared to the model group, all medication-treated groups showed reduced myocardial damage, including less hemorrhage, reduced inflammatory infiltration, and improved myocardial structure, with the high-dose TYPs group exhibiting the most significant improvement; the amiodarone group and high-dose TYPs group showed a significant increase in heart rate (t-1 to t-4), lower arrhythmia scores, reduced miRNA-1 and miRNA-133a expression; the high-dose TYPs group exhibited significantly increased mRNA expression levels of KCND2, KCNH2, KCNQ1, KCNJ2, and CACNA1C, as well as elevated protein levels of Kv4.2, HERG, KvLQT1, Kir2.1, and Cav1.2 (P<0.05 or P<0.01). ConclusionTMPs can improve myocardial damage and reduce the incidence of ventricular arrhythmia in I/R rats. The underlying mechanism may be related to the downregulation of miRNA-1 and miRNA-133a gene expression, as well as the upregulation of K+ and Ca2+ channel-related genes and proteins.