Role of USP22 in myocardial ischemia-reperfusion injury in diabetic mice
10.3760/cma.j.cn131073.20240404.01019
- VernacularTitle:USP22在糖尿病小鼠心肌缺血再灌注损伤中的作用
- Author:
Jiabao SU
1
;
Guo CHEN
;
Guanli ZHENG
;
Hongbo QIU
;
Weiwei CAI
;
Bao HOU
;
Xuexue ZHU
;
Jiru ZHANG
Author Information
1. 江南大学附属医院麻醉科,无锡 214122
- Keywords:
Myocardial reperfusion injury;
Diabetes mellitus;
Ubiquitin-specific proteases
- From:
Chinese Journal of Anesthesiology
2024;44(10):1247-1252
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To evaluate the role of ubiquitin-specific peptidase 22 (USP22) in myocardial ischemia-reperfusion (I/R) injury in diabetic mice.Methods:Seventy-eight SPF male C57BL/6 mice, aged 6-8 weeks, were divided into 6 groups using a random number table method: sham operation group (Sham group, n=12), type 1 diabetes mellitus + sham operation group (T1D+ Sham group, n=12), myocardial I/R injury group (I/R group, n=12), type 1 diabetes mellitus + myocardial I/R injury group (DI/R group, n=12), type 1 diabetes mellitus + myocardial I/R injury + empty vector group (DI/R+ V group, n=15), and type 1 diabetes mellitus + myocardial I/R injury + USP22 overexpression group (DI/R+ U group, n=15). Type 1 diabetes mellitus was induced by intraperitoneal injection of streptozotocin-citrate buffer. Myocardial I/R was induced by ligation of the left coronary artery. At 1 day before developing the myocardial I/R injury model, DI/R+ U group and DI/R+ V group received an intramyocardial injection of USP22 overexpression plasmid or empty vector plasmid, respectively. At 24 h of reperfusion, cardiac function was assessed using the echocardiography to measure the left ventricular ejection fraction and left ventricular fractional shortening. The mice were then sacrificed, and their hearts were harvested for measurement of the myocardial infarct size, for microscopic examination of pathological changes (using HE staining) and for determination of the apoptosis rate (TUNEL staining), reactive oxygen species(ROS) activity (DHE staining), and USP22 expression (by Western blot, immunofluorescence, and immunohistochemistry). Proteomic analysis was performed to identify downstream proteins regulated by USP22, and protein-protein interactions were investigated using co-immunoprecipitation. Results:Compared with Sham group, the cardiac function indices were significantly decreased, the apoptosis rate of myocardial cells and ROS activity were increased, and USP22 expression in myocardial tissues was down-regulated in I/R group ( P<0.05). Compared with I/R group, the percentage of myocardial infarct size was significantly increased, the cardiac function indices were decreased, the apoptosis rate of myocardial cells and ROS activity were increased, and USP22 expression in myocardial tissues was up-regulated ( P<0.05), and the pathological damage to myocardial tissues was aggravated in DI/R group. Compared with DI/R+ V group, the percentage of myocardial infarct size was significantly decreased, the cardiac function indices were increased, the apoptosis rate of myocardial cells and ROS activity were decreased, and USP22 expression in myocardial tissues was up-regulated ( P<0.05), and the pathological damage to myocardial tissues was alleviated in DI/R+ U group. The results of proteomics combined with co-immunoprecipitation experiments showed an interaction between calponin 1 and USP22. Conclusions:During myocardial I/R injury in diabetic mice, USP22 may act as an endogenous protective mechanism, and calponin 1 might be a downstream mechanism through which USP22 exerts its protective effects.