Correlation between body fat distribution measured by quantitative CT and body mass index in adults receiving physical examination
10.3760/cma.j.cn115624-20231029-00243
- VernacularTitle:成年体检人群定量CT所测体脂肪分布与体重指数的相关性
- Author:
Yang ZHOU
1
;
Yongbing SUN
;
Qi QIAO
;
Xin QI
;
Yawei DU
;
Zhonglin LI
;
Zhi ZOU
;
Xiaoling WU
;
Jing ZHOU
;
Min QU
;
Xiaolin ZHANG
;
Yong WANG
;
Shewei DOU
;
Hongming LIU
;
Fengshan YAN
;
Jiadong ZHU
;
Yongli LI
Author Information
1. 郑州大学人民医院/河南大学人民医院/新乡医学院/河南省人民医院医学影像科,郑州 450003
- Keywords:
Adults;
Physical examination;
Quantitative CT;
Body mass index;
Abdominal fat area;
Liver fat content;
Abdominal obesity;
Fatty liver
- From:
Chinese Journal of Health Management
2024;18(5):354-360
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To analyze the correlation between body fat distribution measured by quantitative CT (QCT) and body mass index in adults receiving physical examination.Methods:It was a cross-sectional study. From January to December 2021, 3 205 adults undergoing physical examination who met the inclusion criteria and underwent chest CT and QCT examination in the health management discipline of Henan Provincial People′s Hospital were selected as the research objects. The general data were collected; and the subcutaneous fat area, visceral fat area, total abdominal fat area, liver fat content, abdominal obesity and fatty liver detection rate were measured by QCT. According to body mass index, the subjects were divided into normal group (18.5-<24.0 kg/m 2, 1 343 cases), overweight group (24.0-<28.0 kg/m 2, 1 427 cases) and obesity group (≥28.0 kg/m 2, 435 cases). One-way analysis of variance and χ2 test were used to compare the differences of QCT indexes among the three groups. Pearson and Spearman correlation analysis were used to evaluate the correlation between QCT indexes and body mass index. Receiver operating characteristic (ROC) curve was drawn to analyze the diagnostic effect of QCT on obesity and fatty liver. Results:Subcutaneous fat area, visceral fat area, total abdominal fat area, liver fat content, abdominal obesity and fatty liver detection rate in obese group were all significantly higher than those in overweight group and normal group [males, (147.60±46.44) vs (104.33±27.68), (73.46±22.65) cm 2; (297.46±54.70) vs (229.40±53.12), (159.57±49.68) cm 2; (445.06±70.24) vs (333.73±62.91), (233.02±61.87) cm 2; 11.30% (7.90%, 15.55%) vs 8.75% (6.50%, 11.70%), 6.60% (4.80%, 8.70%); 100.0% vs 96.0%, 64.0%; 92.9% vs 86.7%, 73.3%; females, (213.96±48.61) vs (155.85±35.31), (107.24±31.01) cm 2; (185.41±43.88) vs (142.48±41.75), (96.56±36.50) cm 2; (399.37±68.07) vs (298.33±56.86), (203.80±57.53) cm 2; 9.80% (6.90%, 13.30%) vs 7.30% (5.05%, 9.80%), 5.40%(3.50%, 7.20%); 96.4% vs 74.8%, 28.9%; 87.3% vs 75.6%, 56.5%], and were all positively correlated with body mass index (males, r/ rs=0.709, 0.738, 0.831, 0.402, 0.464, 0.225; females, r/ rs=0.798, 0.695, 0.841, 0.416, 0.605, 0.276) (all P<0.001). In both male and female subjects, the detection rates of obesity based on QCT were significantly higher than those based on body mass index (male, 86.9% vs 16.6%; female, 49.3% vs 8.9%), and the detection rates of fatty liver based on QCT were significantly higher than those based on ultrasound (male, 83.6% vs 57.1%; female, 65.2% vs 27.6%) (all P<0.001). ROC curve showed that when the visceral fat area of 142 cm 2 was used as the cut-off value for the diagnosis of obesity in male subjects, the sensitivity and specificity was 100% and 15.8%, respectively; and when the cut-off value of liver fat content 5.0% was used to diagnose fatty liver, the sensitivity and specificity was 88.9% and 25.1%, respectively. When the visceral fat area of 115 cm 2 was set as the cut-off value for the diagnosis of obesity in female subjects, the sensitivity and specificity was 96.4% and 55.3%, respectively; when the liver fat content of 5.0% was set as the cut-off value for the diagnosis of fatty liver, the sensitivity and specificity was 83.7% and 43.2%, respectively. Conclusions:The indexes of abdominal fat and liver fat measured by QCT in adults receiving physical examination are all positively correlated with body mass index. The effect of QCT in the diagnosis of obesity and fatty liver are both better than body mass index and ultrasound.