OpenSim-based prediction of lower-limb biomechanical behavior in adolescents with plantarflexor weakness
- VernacularTitle:基于OpenSim预测青少年跖屈肌无力的下肢生物力学行为
- Author:
Enhong FU
1
;
Hang YANG
;
Cheng LIANG
;
Xiaogang ZHANG
;
Yali ZHANG
;
Zhongmin JIN
Author Information
- Keywords: lower extremity; plantarflexor weakness; biomechanics; gait; prediction; muscle energy expenditure; muscle activation; OpenSim Moco
- From: Chinese Journal of Tissue Engineering Research 2025;29(9):1789-1795
- CountryChina
- Language:Chinese
- Abstract: BACKGROUND:The plantarflexor weakness is a common muscle defect in patients with spastic cerebral palsy and Charcot-Marie-Tooth,which clinically manifests abnormal gaits,and the relationship between plantarflexor weakness and abnormal gaits is unclear. OBJECTIVE:To explore the biomechanical behavior of the lower limb under the action of a single factor of plantarflexor weakness to reveal the mechanism of abnormal gait induced by plantarflexor weakness and to provide guidance for the rehabilitation training of patients with plantarflexor weakness. METHODS:A predictive framework of musculoskeletal multibody dynamics in the sagittal plane was established based on OpenSim Moco to predict lower limb joint angles and muscle activation changes during walking in normal subjects.The validity of the framework was verified by combining the inverse kinematics and electromyogram activation time of the experimental data.Reduced isometric muscle forces were used to model plantarflexor weakness and to compare predicted lower extremity joint angles,joint moments,and muscle energy expenditure with normal subjects to analyze the effects of plantarflexor weakness on lower extremity biomechanics. RESULTS AND CONCLUSION:(1)The Moco-based prediction framework realistically predicted the biomechanical changes of the lower limbs during walking in normal subjects(joint angles:normalized correlation coefficient≥0.73,root mean square error≤7.10°).(2)The musculoskeletal model used a small stride support phase to increase the"heel-walking"gait during plantarflexor weakness.When the plantarflexor weakness reached 80%,the muscle energy expenditure was 5.691 4 J/kg/m,and the maximum activation levels of the gastrocnemius and soleus muscles were 0.72 and 0.53,which might cause the plantarflexor weakness patients to be more prone to fatigue when walking.(3)Muscle energy expenditure was significantly higher when the weakness of plantarflexors exceeded 40%,and the joint angles and moments of the lower limbs deteriorated significantly when the weakness of plantarflexors exceeded 60%,suggesting that there may be a"threshold"for the effect of plantarflexor weakness on gait,which may correspond to the point at which health care professionals should intervene in the clinical setting.