- VernacularTitle:富血小板纤维蛋白复合甲基丙烯酰化明胶水凝胶的促成骨性能
- Author:
Hongxia ZHAO
1
;
Zhengwei SUN
;
Yang HAN
;
Xuechao WU
;
Jing HAN
Author Information
- Keywords: bone injury; platelet-rich fibrin; gelatin methacryloyl; hydrogel; skull defect
- From: Chinese Journal of Tissue Engineering Research 2025;29(4):809-817
- CountryChina
- Language:Chinese
- Abstract: BACKGROUND:Platelet-rich fibrin(PRF)has many advantages,such as simple preparation,low production cost,and high safety,and has been widely used in the study of bone defect repair in oral and maxillofacial surgery,but there are problems such as too fast degradation rate and short release time of growth factors. OBJECTIVE:PRF was loaded into gelatin methacryloyl(GelMA)hydrogel and its osteogenic properties were analyzed by in vivo and in vitro experiments. METHODS:(1)New Zealand white rabbit venous blood was extracted to prepare PRF.GelMA hydrogels containing 0,0.05,0.075,and 0.1 g PRF were prepared,respectively,and were recorded as GelMA,GelMA/PRF-0.05,GelMA/PRF-0.075,and GelMA/PRF-0.1,respectively,to characterize the micromorphology and in vitro slow-release properties of the hydrogels.(2)Four kinds of hydrogels were co-cultured with MC3T3-E1 cells,respectively,and the cell proliferation activity was detected with the single cultured cells as the control.After osteogenic induction,alkaline phosphatase activity,mineralization ability,mRNA and protein expression levels of osteogenic genes(osteocalcin,osteopontin,RUNX2),ERK1/2-p38 MAPK pathway protein mRNA and protein expression levels were detected.(3)Fifteen New Zealand white rabbits were taken.Four full-layer bone defects of 8 mm diameter were prepared in the skull of each rabbit,one of which was implanted without any material(blank control group),and the other three were implanted with GelMA hydrogel,PRF,and GelMA/PRF-0.1 hydrogel,respectively.The bone defect was detected by Micro-CT and bone morphology was observed at 4,8,and 12 weeks after operation. RESULTS AND CONCLUSION:(1)Scanning electron microscopy observed that all the hydrogels of the four groups had honeycomb pore structure,and the pore size of the hydrogels decreased slightly with the increase of PRF content,but there was no significant difference between the groups.The three groups of GelMA/PRF hydrogel could release transforming growth factor β1 and insulin-like growth factor 1 at a certain rate,and the cumulative release of transforming growth factor β1 and insulin-like growth factor 1 increased significantly with the extension of time.(2)CCK-8 assay and live/dead staining showed that GelMA/PRF hydrogel could promote the proliferation of MC3T3-E1 cells.The results of alkaline phosphatase staining,alizarin red staining,and osteogenic gene detection showed that GelMA/PRF hydrogel could promote the osteogenic differentiation of MC3T3-E1 cells,and inhibit the expression of ERK1/2-p38 MAPK pathway protein,and showed a PRF content dependence.(3)Micro-CT scan showed that the bone mineral density and bone volume fraction in the bone defect of GelMA/PRF-0.1 hydrogel group were higher than those in the other three groups(P<0.05).Hematoxylin-eosin staining showed that compared with the other three groups,GelMA/PRF-0.1 hydrogel group had faster and more mature new bone formation at the bone defect.(4)These findings indicate that GelMA/PRF hydrogel has good osteogenic activity both in vivo and in vitro,which may be related to inhibiting the expression of ERK1/2-p38 MAPK pathway protein.