Analysis of laboratory indicators related to female pattern hair loss
10.3760/cma.j.cn114453-20231129-00242
- VernacularTitle:女性型脱发相关实验室指标分析
- Author:
Xifei QIAN
1
;
Zhewei HUANG
;
Chongxiang FAN
;
Jingyi TU
;
Jue HOU
;
Hanxiao CHENG
;
Jufang ZHANG
Author Information
1. 浙江中医药大学,杭州 310052
- Keywords:
Alopecia;
Female pattern hair loss;
Vitamin D;
Dehydroepiandrosterone sulfate;
Thyroid-stimulating hormone
- From:
Chinese Journal of Plastic Surgery
2024;40(1):34-40
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To investigate the effect of laboratory indicators on hair loss in patients with female pattern hair loss (FPHL).Methods:Patients with FPHL who visited the Outpatient Clinic of the Department of Medical Aesthetics in Hangzhou First People’s Hospital from November 2022 to November 2023 were selected as the study group, and healthy women who matched the age of the study group in the physical examination center during the same period were selected as the control group. The general information of the patient was recorded, and was also tested by trichoscopy to rule out other patterns of alopecia. Representative indicators including testosterone, dehydroepiandrosterone sulfate(DHEA-S), thyroid-stimulating hormone, 25-hydroxyvitamin D, and serum ferritin were selected from laboratory tests for further analysis. Otherwise, the proportion of deficiency in vitamin D(<20 ng/ml) was calculated based on 25-hydroxyvitamin D levels (number of deficiency cases/total number of cases in each group×100%). Count data were presented as samples (percentages), and chi-square test was used for comparison between groups. Normally distributed continuous data were presented with Mean±SD, independent samples t-test was used for comparison between groups, M( Q1, Q3) was used for non-normally distributed continuous data, and Wilcoxon rank-sum test was used for comparison between groups. Multivariate logistic regression was used to analyze the influencing factors of FPHL. P<0.05 was statistically significant. Results:A total of 37 patients were selected in both groups. The mean age was (28.8±1.3) years in the study group and (29.6±0.9) years in the control group ( t=0.49, P=0.625). The body mass index was (22.8±0.4) kg/m 2 in the study group, and (23.5±0.3) kg/m 2 in the control group ( t=1.26, P=0.211). The testosterone level was 0.58 (0.49, 0.79) nmol/L in the study group, and 0.54 (0.50, 0.78) nmol/L in the control group( Z=1.42, P=0.157). The level of DHEA-S was 6.21 (5.18, 9.60) μmol/L in the study group, and 6.20 (5.20, 9.34) μmol/L in the control group ( Z=2.75, P=0.006). The level of thyroid-stimulating hormone was 2.56 (1.55, 3.66) mU/L in the study group and 1.49 (1.05, 2.65) mU/L in the control group ( Z=2.51, P=0.012). The level of 25-hydroxyvitamin D was 15.44 (11.80, 21.20) ng/ml in the study group, and the level of 25-hydroxyvitamin D was 20.32 (12.07, 21.20) ng/ml in the control group ( Z=2.30, P=0.021), and the proportion of 25-hydroxyvitamin D deficiency in the study group was 64.9% (24/37), which was higher than that in the control group [40.5% (15/37)] ( χ2=4.39, P=0.036). The serum ferritin level was 64.44 (39.47, 133.45) μg/L in the study group and 67.75 (52.63, 143.83) μg/L in the control group ( Z=0.70, P=0.484). The results of multivariate logistic regression analysis showed that the risk of FPHL was increased by the high level of DHEA-S and thyroid-stimulating hormone, and the low level of 25-hydroxyvitamin D (all P<0.05). Conclusion:Abnormal level of DHEA-S, thyroid-stimulating hormone, and 25-hydroxyvitamin D may be risk factors for FPHL.