Sensitivity of colorectal cancer organoids to hyperthermic intraperitoneal chemotherapy with lobaplatin
10.3760/cma.j.cn441530-20230613-00201
- VernacularTitle:洛铂对结直肠癌类器官的腹腔热灌注药物敏感性检测
- Author:
Duo LIU
1
;
Hui WANG
;
Weihao DENG
;
Jianqiang LAN
;
Zhiwen SONG
;
Yu ZHU
;
Jianling JING
;
Jian CAI
Author Information
1. 深圳市第二人民医院(深圳大学第一附属医院)肛肠外科,深圳 518025
- Keywords:
Colorectal neoplasms;
Peritoneal metastasis;
Hyperthermic intraperitoneal chemotherapy;
Loplatin;
Organoids
- From:
Chinese Journal of Gastrointestinal Surgery
2024;27(5):486-494
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To investigate the sensitivity of tumor organoids derived from samples of colorectal cancer to lobaplatin and oxaliplatin hyperthermic perfusion in vitro and to assist clinical development of hyperthermic intraperitoneal chemotherapy. Method:Tumor samples and relevant clinical data were collected from patients with pathologically confirmed colorectal cancer in the Sixth Affiliated Hospital of Sun Yat-sen University from July 2021 to December 2022. Organoids were cultured and tumor tissue were passaged. In vitro hyperthermic perfusion experiments were performed on organoids with good viability. Firstly, 10 organoids were treated with oxaliplatin and lobaplatin at the following six concentrations: 1 000, 250, 62.5, 15.6, 3.9, and 0.98 μmol/L. The organoids were exposed to oxaliplatin at 42℃ for 30 minutes and to lobaplatin at 42℃ for 60 minutes. Dose-response curves of responses to in vitro hyperthermic perfusion with these two drugs were constructed and evaluated. Clinical doses of oxaliplatin and lobaplatin were further tested on 30 organoids. This testing revealed oxaliplatin was effective at 579 μmol/L at a hyperthermic perfusion temperature of 42℃ for 30 min and lobaplatin was effective at 240 μmol/L at a hyperthermic perfusion temperature of 42℃ for 60 minutes. Result:Thirty-two tumor organoids were cultured from samples of colorectal cancer. The median concentration required for oxaliplatin to eliminate 50% of tumor cells (IC50) was 577.45 μmol/L (IQR: 1846.09 μmol/L). The median IC50 for lobaplatin was 85.04 μmol/L (IQR: 305.01 μmol/L).The difference between the two groups was not statistically significant ( Z=1.784, P=0.084). In seven of 10 organoids, lobaplatin showed a greater IC50 after in vitro hyperthermic perfusion than did oxaliplatin. Testing of 30 organoids with clinical doses of oxaliplatin and lobaplatin revealed that oxaliplatin achieved an average inhibition rate of 39.6% (95%CI: 32.1%?47.0%), whereas the average rate of inhibition for lobaplatin was 89.7% (95%CI: 87.0%?92.3%): this difference is statistically significant ( t=?15.282, P<0.001). Conclusion:The rate of inhibition achieved by hyperthermic perfusion of lobaplatin in vitro is better than that achieved by hyperthermic perfusion with oxaliplatin. Lobaplatin is more effective than oxaliplatin when administered by hyperthermic intraperitoneal perfusion and therefore has the potential to replace oxaliplatin in this setting.