A radiomics-based model for differentiation between benign and malignant gastrointestinal stromal tumors
10.3969/j.issn.1673-4254.2018.01.009
- VernacularTitle:基于放射组学的胃肠道间质瘤分类模型
- Author:
Wenhua ZHANG
1
;
Tao CHEN
;
Minghui ZHANG
;
Pingping LIU
;
Zhentai LU
Author Information
1. 南方医科大学医学图像处理重点实验室
- Keywords:
gastrointestinal stromal tumors;
multivariate analysis;
classification model;
radiomics
- From:
Journal of Southern Medical University
2018;38(1):55-61
- CountryChina
- Language:Chinese
-
Abstract:
Objective To establish a model for discrimination between benign and malignant gastrointestinal stromal tumors (GIST) by analyzing the texture features extracted from computed tomography (CT) images. Methods The CT datasets were collected from 110 patients with GIST (including 80 as the training cohort and 30 as the validation cohort). Feature set reduction was executed with the 0.632+ bootstrap method in the initial feature set followed by stepwise forward feature selection in the feature subset, and the classification model was generated by logistic regression. Results The 6-texture-feature-based classification model successfully discriminated between benign and malignant GIST in both the training and validation cohorts with AUCs of 0.93 and 0.91, sensitivity of 0.88 and 0.87, specificity of 0.85 and 0.86, and accuracy of 0.87 and 0.86 in the two cohorts, respectively. Conclusion This classification model established by radiomics analysis is capable of discrimination between benign and malignant GIST to provide assistance in preoperative diagnosis of GIST.