A Multi-Omics Study on the Differences in Blood Biological Characteristics between Acute Gout Patients with Damp-Heat Toxin Accumulation Syndrome and Damp-Heat Accumulation Syndrome
10.13288/j.11-2166/r.2025.05.009
- VernacularTitle:痛风急性期湿热毒蕴证及湿热蕴结证患者血液生物学特征差异的多组学研究
- Author:
Wei LIU
1
;
Bowen WEI
1
;
Hang LU
1
;
Yuxiu KA
1
;
Wen WANG
1
Author Information
1. First Teaching Hospital of Tianjin University of Traditional Chinese Medicine,Tianjin,300193
- Publication Type:Journal Article
- Keywords:
gout;
damp-heat toxin accumulation syndrome;
damp-heat accumulation syndrome;
metabolomics;
proteomics;
transcriptomics;
lipid metabolism;
apolipoprotein B
- From:
Journal of Traditional Chinese Medicine
2025;66(5):480-491
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo combine metabolomics, proteomics, and transcriptomics to analyze the biological characteristics of damp-heat toxin accumulation syndrome and damp-heat accumulation syndrome in acute gout. MethodsBlood samples were collected from 15 patients with damp-heat toxin accumulation syndrome and 15 patients with damp-heat accumulation syndrome in acute gout in clinical practice. Metabolomics technology was applied to detect serum metabolites, and an orthogonal partial sample least squares discriminant analysis model was constructed to screen for metabolites with significant intergroup changes, and enrichment pathway analysis and receiver operating characteristic (ROC) curve analysis were performed. Astral data independence acquisition (DIA) was used to detect serum proteins, perform principal component analysis and screen differential proteins, demonstrate differential ploidy by radargram, apply subcellular localisation to analyse protein sources, and finally apply weighted gene co-expression network analysis (WGCNA) to find key proteins. Transcriptome sequencing technology was also applied to detect whole blood mRNA, screen differential genes and perform WGCNA, and construct machine learning models to screen key genes. ResultsMetabolome differential analysis revealed 62 differential metabolites in positive ion mode and 26 in negative ion mode. These differential metabolites were mainly enriched in the mTOR signaling pathway and FoxO signaling pathway, with trans-3,5-dimethoxy-4-hydroxycinnamaldehyde, guanabenz, 4-aminophenyl-1-thio-beta-d-galactopyranoside showing the highest diagnostic efficacy. The proteome differential analysis found that 55 proteins up-regulated and 20 proteins down-regulated in the samples of damp-heat toxin accumulation syndrome. Notably, myelin basic protein (MBP), transferrin (TF), DKFZp686N02209, and apolipoprotein B (APOB) showed the most significant differences in expression. Differential proteins were mainly enriched in pathways related to fat digestion and absorption, lipid and atherosclerosis, and cholesterol metabolism. WGCNA showed the highest correlation between damp-heat toxin accumulation syndrome and the brown module, with proteins in this module primarily enriched in the hypoxia-inducible factor 1 (HIF-1) signaling pathway and lipid and atherosclerosis. Transcriptomic differential analysis identified 252 differentially expressed genes, with WGCNA indicating the highest correlation between damp-heat toxin accumulation syndrome and the midnight blue module. The random forest (RF) model was identified as the optimal machine learning model, predicting apolipoprotein B receptor (APOBR), far upstream element-binding protein 2 (KHSRP), POU domain class 2 transcription factor 2 (POU2F2), EH domain-containing protein 1 (EHD1), and family with sequence similarity 110A (FAM110A) as key genes. Integrated multi-omics analysis suggested that damp-heat toxin accumulation syndrome in the acute phase of gout is closely associated with lipid metabolism, particularly APOB. ConclusionCompared to damp-heat accumulation syndrome in the acute phase of gout, damp-heat toxin accumulation syndrome is more closely associated with lipid metabolism, particularly APOB, and lipid metabolism disorders contribute to the development of damp-heat toxin accumulation syndrome in patients with acute gout.