Mechanism of Weiliuan Mixture in Regulating Ferroptosis and Inhibiting Progression of Gastric Cancer Based on Transcriptome
10.13422/j.cnki.syfjx.20242022
- VernacularTitle:基于转录组学探讨胃瘤安合剂调控铁死亡抑制胃癌进展的作用机制
- Author:
Jingxiao LI
1
;
Shenlin LIU
1
;
Xi ZOU
1
;
Minghao QI
1
Author Information
1. Affiliated Hospital of Nanjing University of Chinese Medicine,Nanjing 210029,China
- Publication Type:Journal Article
- Keywords:
Weiliuan mixture;
gastric cancer;
ferroptosis;
phosphatidylinositol 3-kinase /protein kinase B /mammalian target of rapamycin (PI3K/ Akt /mTOR);
transcriptomics
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(6):125-135
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo observe the inhibitory effect of the Weiliuan mixture (WLAHJ) on the subcutaneous xenograft tumor of MKN-74 gastric cancer cells, and explore the potential anti-gastric cancer mechanism of WLAHJ by using transcriptomic sequencing technology to reveal related genes and pathways. Methods30 Balb/c nude mice were randomly divided into model, low-, medium-, and high-dose(15,30,45 g·kg-1) WLAHJ and 5-FU (0.025 g·kg-1) groups to build a subcutaneous xenograft tumor model with MKN-74 human gastric cancer cells. After modeling,each group was continuously treated with the corresponding drugs for 28 days. During the treatment period, the body weight and tumor size of the mice were observed and recorded every 2 days. At the end of the treatment, the mice were sacrificed, and required samples were collected to calculate the tumor inhibition rate of WLAHJ on the subcutaneous xenograft tumor. High-throughput transcriptomic sequencing (RNA-seq) technology was used to analyze the differentially expressed genes in the subcutaneous tumor tissues of the model group and the medium-dose WLAHJ group, thus exploring the potential mechanism of WLAHJ in gastric cancer intervention. Immunofluorescence experiments were conducted to detect the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), transferrin receptor protein-1 (TFR-1), and acyl-CoA synthetase long-chain family member 4 (ACSL4) in subcutaneous xenograft tumors of each group. Cell counting kit-8(CCK-8) and colony formation assays were used to detect the viability and anti-proliferative ability of human gastric cancer AGS and MKN-74 cells at different concentrations of WLAHJ. Kits were used to detect the levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) activity in cells. Western blot was used to detect the expression levels of GPX4, SLC7A11, TRF-1, ACSL4, spermidine/spermine N1-acetyltransferase 1 (SAT1), arachidonic acid 15-lipoxygenase (ALOX15), and key proteins in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. ResultsThe mechanism of WLAHJ in gastric cancer intervention may be related to ferroptosis and the PI3K/Akt /mTOR signaling pathway. The growth of subcutaneous xenograft tumors in nude mice of the WLAHJ and 5-FU groups(P<0.05,P<0.01), GPX4, and SLC7A11 dropped significantly(P<0.01), while TFR-1, ACSL4, SAT1, and ALOX15(P<0.05,P<0.01)increased significantly compared with those in the model group. The levels of ROS, Fe2+, and MDA increased in the WLAHJ and 5-FU groups and the proliferation of gastric cancer cells, SOD activity, the ratios of phosphorybation (p)-mTOR/mTOR, p-PI3K/PI3K, and p-Akt/Akt protein expressions(P<0.05,P<0.01)decreased compared with those in the blank group. ConclusionThe mechanism of WLAHJ in treating gastric cancer may be related to the regulation of the PI3K/ Akt /mTOR signaling pathway to intervene in ferroptosis.