Effect of Wenyang Shengji Ointment (温阳生肌膏) on MGO Content and HIF-1a/VEGF Pathway in Wound Tissue of Diabetic Wound Model Rats with Yin Syndrome
10.13288/j.11-2166/r.2025.04.010
- VernacularTitle:温阳生肌膏对糖尿病阴证创面模型大鼠创面组织甲基乙二醛含量及HIF-1α/VEGF通路的影响
- Author:
Xinyu HUANG
1
;
Li CHEN
2
;
Yarong DING
1
;
Jun WANG
3
;
Shuihua FENG
1
;
Zhongzhi ZHOU
1
Author Information
1. The First Hospital of Hunan University of Chinese Medicine,Changsha,410007
2. Provincial Key Laboratory of Vascular Biology and Translational Medicine,Hunan University of Chinese medicine
3. Hainan General Hospital
- Publication Type:Journal Article
- Keywords:
diabetes;
wound healing;
methylglyoxal;
hypoxia-inducible factor 1α;
vascular endothelial growth factor;
yin syndrome;
Wenyang Shengji Ointment (温阳生肌膏)
- From:
Journal of Traditional Chinese Medicine
2025;66(4):382-389
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the possible mechanism of Wenyang Shengji Ointment (温阳生肌膏, WSO) in the treatment of diabetic wounds with yin syndrome. MethodsA total of 24 SD rats were randomly divided into a group (n=6) and modeling group (n=18). The modeling group rats were fed with high-fat diet for 14 days and then were injected intraperitoneally with streptozotocin to induce diabetic model. After steroid injection, full-thickness skin defects were created on the back of the rats to establish a diabetic wound with yin syndrome model. The normal group was fed with regular diet, and full-thickness skin defects were created surgically on the back of the rats. The 18 successfully modeled rats were further divided into three groups, the model group, the WSO group, and the Beifuxin (Recombinant Bovine Basic Fibroblast Growth Factor Gel, BX) group, 6 rats in each group. The WSO group was given the ointment to the wound, the Beifuxin group was givne BX gel, and the normal group and model group was disinfected and treated with saline. All groups had their dressings changed once daily for 14 days. Wound healing was recorded on days 0, 3, 7, and 14, and the wound healing rate was calculated on day 3, 7, and 14. On day 14 after treatment, HE staining was performed to observe the pathological morphology of the wound tissue. Western Blot was used to detect the relative protein levels of hypoxia-inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). Immunofluorescence was used to measure the fluorescence intensity of HIF-1α in the wound tissue, and ELISA was used to detect the methylglyoxal (MGO) content in the wound tissue. ResultsCompared with the normal group, the model group showed poor wound healing on day 3, 7, and 14, with a low wound healing rate (P<0.01). HE staining showed scab coverage on the wound, with inflammatory cell infiltration and disorganized collagen arrangement. The relative protein levels of VEGF were significantly reduced, while the relative protein levels of HIF-1α and the MGO content significantly increased (P<0.01), and the fluorescence intensity of HIF-1α was enhanced. Compared to the model group, the WSO group and Beifuxin group showed better wound healing on day 3, 7, and 14, with an increased wound healing rate (P<0.01). The wound tissue showed clear and complete epithelial structure, reduced inflammatory cells, mature granulation tissue, and organized collagen arrangement. MGO content was significantly reduced (P<0.01). The relative protein levels of HIF-1α and VEGF both significantly increased in the WSO group, while only VEGF increased in the Beifuxin group (P<0.05 or P<0.01). Compared with the Beifuxin group, the WSO group had a thicker epidermal layer, prominent collagen formation, significantly increased HIF-1α fluorescence expression, reduced MGO content in the wound tissue, and higher relative protein levels of HIF-1α (P<0.05). ConclusionWSO can reduce the accumulation of MGO in diabetic wound tissue with yin syndrome and activate the HIF-1α/VEGF pathway, which could be one of the mechanisms for promoting wound healing.