Quercetin Attenuates Ferroptosis Against LPS-induced Acute Kidney Injury Rats via Modulating Keap1/Nrf2/ARE Pathway
10.13422/j.cnki.syfjx.20240219
- VernacularTitle:基于Keap1/Nrf2/ARE通路探讨槲皮素对脂多糖诱导的急性肾损伤大鼠铁死亡影响
- Author:
Haoruo YANG
1
;
Dajun YU
2
;
Yu ZHANG
2
;
Bin YANG
2
Author Information
1. Tianjin University of Chinese Medicine, Tianjin 301617, China
2. Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Publication Type:Journal Article
- Keywords:
acute kidney injury;
quercetin;
ferroptosis;
Kelch-like epichlorohydrin-related protein 1 (Keap1)/nuclear factor erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(5):65-75
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the effect and therapeutic role of quercetin on ferroptosis in lipopolysaccharide (LPS)-induced acute kidney injury (AKI) rats based on the Kelch-like epichlorohydrin-related protein-1 (Keap1)/nuclear factor erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. MethodsSixty male SD rats were randomly divided into normal group, model group, quercetin high-dose (100 mg·kg-1) and low-dose (10 mg·kg-1) groups, ferroptosis inhibitor Ferrostatin 1 (FER1) group (5 mg·kg-1), and quercetin high-dose + Nrf2 inhibitor group (ML385, 30 mg·kg-1). Except for the normal group, the AKI rat model was established in each group by intraperitoneal injection of LPS (10 mg·kg-1). Following successful modeling, each treatment group received the corresponding dose of drug intervention, while the normal and model groups were administered an equal volume of normal saline. The intervention lasted for 3 weeks. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were measured biochemically to assess renal function. Serum tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β and IL-6 levels were detected by enzyme-linked immunosorbent assay (ELISA). The levels of Fe2+, malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) in renal tissue were detected. Hematoxylin-eosin (HE), Masson, and periodic acid-Schiff (PAS) staining were employed to observe pathological morphological changes in renal tissue. Mitochondrial morphological changes were observed using transmission electron microscopy. Reactive oxygen species (ROS) levels in renal tissue were detected by immunofluorescence (IF). The protein and mRNA expression levels of Keap1, Nrf2, heme oxygenase-1 (HO-1), glutathione peroxidase 4 (GPX4), transferrin receptor (TFR1), and kidney injury molecule-1 (KIM-1) were assessed by immunohistochemistry (IHC) and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the normal group, the model group exhibited significantly elevated serum levels of SCr, BUN, TNF-α, IL-1β, IL-6, Fe2+ and MDA in renal tissue, and significantly reduced SOD and GSH levels (P<0.01). Pathological injury in renal tissue was severe, with evident mitochondrial damage characteristic of ferroptosis and a reduced mitochondrial count. ROS levels in renal tissue were significantly increased. The protein and mRNA expression levels of Keap1, TFR1, and KIM-1 in renal tissue were significantly elevated, while those of Nrf2, HO-1, and GPX4 were significantly decreased (P<0.01). Compared with the model group, serum levels of SCr, BUN, TNF-α, IL-1β, IL-6, Fe2+ and MDA in renal tissue in the quercetin dosage groups and FER1 group showed varying degrees of reduction, while SOD and GSH levels were significantly increased (P<0.05). Pathological injury in renal tissue was markedly alleviated, mitochondrial damage improved, and mitochondrial counts increased. ROS levels in renal tissue were significantly reduced. The protein and mRNA levels of Keap1, TFR1, and KIM-1 in renal tissue were significantly decreased, while those of Nrf2, HO-1, and GPX4 were significantly increased, with the most notable improvement in the high-dose quercetin group (P<0.05). In comparison to the high-dose quercetin group, the ML385 group significantly weakened the protective effect of quercetin on AKI rats (P<0.05). ConclusionQuercetin effectively inhibits ferroptosis, improves renal tissue injury, and repairs renal function in AKI rats, and its mechanism may be related to the activation of the Keap1/Nrf2/ARE pathway.