Prognostic analysis of genes related to pyroptosis in prostate cancer cells and the regulatory role of NLRP1
10.3969/j.issn.1009-8291.2025.01.015
- VernacularTitle:前列腺癌细胞焦亡相关基因预后分析及NLRP1对前列腺癌细胞焦亡的调节作用
- Author:
Xiaolu MA
1
;
Jiaqin CHEN
1
;
Junlong FENG
1
;
Qi ZHAO
1
;
Bin WANG
1
Author Information
1. Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
- Publication Type:Journal Article
- Keywords:
prostate cancer;
pyroptosis;
nucleotidebinding oligomerization domain-like receptor containing pyrin domain 1;
The Cancer Genome Atlas
- From:
Journal of Modern Urology
2025;30(1):73-81
- CountryChina
- Language:Chinese
-
Abstract:
[Objective] To analyze the prognostic value of prostate cancer (PCa) pyroptosis-related genes (PRGs) using gene expression databases and to explore the regulatory mechanism of nucleotidebinding oligomerization domain-like receptor containing pyrin domain 1 (NLRP1) in the pyroptosis of PCa cells. [Methods] Fragments per kilobase of exon model per million reads mapped (FPKM) data and clinical information from PCa and adjacent tissues from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were obtained. Differentially expressed PRGs between PCa and adjacent tissues, classified subtypes and plotted survival curves were analyzed. Univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to screen prognosis-related PRGs, risk scores were calculated, and a prognostic risk model was constructed and validated. Patients were divided into high and low risk groups based on the median risk scores from the training and validation sets, and gene ontology (GO) enrichment and kyoto encyclopedia of genes and genomes (KEGG) analysis were conducted on differentially expressed PRGs. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression level of NLRP1 in PCa cell lines, and pyroptosis was induced in DU145 and LNCaP cells while morphological changes were observed. Western blot (WB) was performed to detect the expression of pyroptosis-related molecules. [Results] A total of 6 prognostic-related PRGs were obtained, including CHMP4C, CYCS, GPX4, GSDMB, NLRP1, and PLCG1. The risk score was positively correlated with the risk of recurrence but negatively correlated with the progression-free survival (P<0.001). The area under the receiver operating characteristic curves (AUCs) for the training set at 1, 3, and 5 years were 0.769 (95%CI: 0.652-0.878), 0.804 (95%CI: 0.736-0.882), and 0.772 (95%CI: 0.631-0.905), respectively, while those for the validation set were 0.731 (95%CI: 0.647-0.826), 0.753 (95%CI: 0.674-0.818), and 0.763 (95%CI: 0.626-0.849), respectively. Differences in expression levels of the 6 PRGs were observed between the high and low risk groups in both the training and validation sets (P<0.05). Cox regression analysis showed that T stage, prostate specific antigen (PSA), Gleason grade, and risk score were independent predictors of PCa prognosis (P<0.05). Differences in risk scores were observed among patients of different ages, T stages, and Gleason grades (P<0.05). NLRP1 was found to be lowly expressed in PCa cell lines and was involved in the regulation of pyroptosis in DU145 and LNCaP cells. [Conclusion] The prognostic risk model constructed based on PRGs has a certain predictability for the prognosis of PCa patients, and NLRP1 may be involved in the regulation of pyroptosis in PCa cells.