Spectrum-effect Relationship of Bupleuri Radix Processed with Trionyx sinensis Blood for Yin Deficiency Based on Saponins
10.13422/j.cnki.syfjx.20240911
- VernacularTitle:基于皂苷类成分研究鳖血柴胡对阴虚作用的谱效关系
- Author:
Mengyu HOU
1
;
Xia ZHAO
1
;
Zhiyu GUO
1
;
Ting LIU
2
;
Yuexing MA
2
;
Yaohui YE
1
Author Information
1. Jiangxi University of Chinese Medicine, Nanchang 330004, China
2. Nanchang Medical College, Nanchang 330052, China
- Publication Type:Journal Article
- Keywords:
Bupleuri Radix processed with Trionyx sinensis blood;
fingerprints;
Yin deficiency;
spectrum-effect relationship;
network pharmacology
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(3):147-155
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo analyze the pharmacodynamic activity of Bupleuri Radix processed with Trionyx sinensis blood in the treatment of Yin deficiency and study the spectrum-effect relationship of this medicine. MethodsHigh performance liquid chromatography was employed to establish the fingerprints of 15 batches of Bupleuri Radix processed with Trionyx sinensis blood, and the similarity was evaluated according to the SOP of Similarity Evaluation System of Chromatographic Fingerprint of TCM (version 2012). A mouse model of Yin deficiency induced by thyroxine was established. The relationship between the active components and the effect on Yin deficiency was explored by grey correlation analysis and partial least squares method based on the changes in the serum levels of triiodothyronine (T3), thyroxine (T4), cyclic adenosine phosphate (cAMP), and cyclic guanosine phosphate (cGMP). The components screened out based on the spectrum-effect relationship were used for retrieval of the targets from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database (TCMSP), The Encyclopedia of Traditional Chinese Medicine (ETCM), and Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP). Furthermore, the Online Mendelian Inheritance in Man (OMIM), GeneCards, TTD, DisGeNET, and Drugbank were employed to establish the active component-target against Yin deficiency network of Bupleuri Radix processed with Trionyx sinensis blood. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out for the core targets. Real-time PCR was conducted to verify the predicted key pathways and mechanisms. ResultsThe fingerprints of the 15 batches of Bupleuri Radix processed with Trionyx sinensis blood showed the similarities of 0.976-0.999 with the control fingerprint. Compared with the model group, the drug administration group showed elevated levels of T3 and T4 and lowered levels of cAMP, cGMP and cAMP/cGMP. The results of grey correlation analysis showed that active components in terms of the correlations followed the trend of saikosaponin B1 > saikosaponin B2 > saikosaponin C > saikosaponin D > saikosaponin A. The partial least squares analysis showed that saikosaponins A, D, B1, and B2 had higher VIP values. Network pharmacology predicted a total of 30 common targets, which were enriched in 276 GO terns and 115 KEGG pathways. The results of Real-time PCR showed that the model group had lower mRNA levels of Caspase-9, kinase insert domain receptor (KDR), and mammalian target of rapamycin (mTOR) and higher mRNA level of mouse double minute 2 homolog (MDM2) than the blank group and the drug administration group. ConclusionBupleuri Radix processed with Trionyx sinensis blood has therapeutic effect on Yin deficiency syndrome, which provides a new idea for studying Bupleuri Radix processed with Trionyx sinensis blood.