Mechanism of Xielitang Against Ulcerative Colitis in Mice Based on "Intestinal Flora-bile Acid" Axis
10.13422/j.cnki.syfjx.20241337
- VernacularTitle:基于“肠道菌-胆汁酸”轴探讨燮理汤治疗溃疡性结肠炎小鼠的作用机制
- Author:
Xiaotian WANG
1
;
Yaning BIAO
2
;
Yixin ZHANG
2
;
Jian CHEN
2
;
Ya GAO
2
;
Yufang ZHANG
2
;
Muqing ZHANG
3
Author Information
1. The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang 050011, China
2. College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
3. Hebei Provincial Hospital of TCM, Shijiazhuang 050011, China
- Publication Type:Journal Article
- Keywords:
Xielitang;
ulcerative colitis;
inflammatory response;
intestinal flora;
bile acid
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(1):30-38
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the protective effect of Xielitang on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice and its possible mechanism. MethodsDSS was used to establish UC model. Sixty mice were randomly divided into a normal group, a model group, a sulfasalazine group (0.6 g·kg-1), and low-, medium-, and high-dose Xielitang groups (1.67, 3.34, 6.68 g·kg-1). After treatment for 42 d, the colon length was recorded, and the disease activity index (DAI) score was calculated. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10). Hematoxylin-eosin (HE) staining was used to observe the pathomorphological changes of colon. Western blot was used to detect the protein expression of farnesoid X receptor (FXR), small heterodimer partner (SHP), liver receptor homolog-1 (LRH-1), cholesterol 7α-hydroxylase (CYP7A1), and fibroblast growth factor receptor 4 (FGFR4) in liver and FXR, sodium-dependent bile acid transporter (ASBT), and fibroblast growth factor 15 (FGF15) in ileum. 16S rRNA sequencing was used to analyze the intestinal flora. Moreover, ultra-high performance liquid chromatography–tandem mass spectrometry was used to detect the bile acid content. ResultsCompared with the normal group, the model group showed significantly decreased colon length, IL-10 content, α-diversity index, abundance of Firmicutes and Lactobacillus, and content of deoxycholic acid (DCA) and lithocholic acid (LCA) (P<0.01), significantly increased DAI score, IL-6 and TNF-α content, abundance of Bacteroidetes, and the content of cholic acid (CA), chenodeoxycholic acid (CDCA), and taurocholic acid (TCA) (P<0.05, P<0.01), significantly down-regulated protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and significantly up-regulated protein expression of LRH-1 and CYP7A1 in liver (P<0.01). In addition, the structure of colonic mucosa was destroyed, and inflammatory cells infiltrated in the model group. Compared with the model group, Xielitang could significantly increase the colon length, IL-10 content, α-diversity index, the abundance of Firmicutes and Lactobacillus, and DCA and LCA content (P<0.05, P<0.01), decrease DAI score, abundance of Bacteroidetes, and the content of IL-6, TNF-α, CA, CDCA, and TCA (P<0.01), up-regulate the protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and down-regulate the protein expression of LRH-1 and CYP7A1 in liver (P<0.01). The pathological damage of colonic mucosa was obviously alleviated. ConclusionXielitang protects against UC probably by regulating the "intestinal microbiota-bile acid" axis, regulating intestinal flora imbalance, and maintaining bile acid homeostasis.