Yunpi Huatan Tongqiao Prescription Regulates Microglial Cell Polarization Phenotype to Improve Inflammation and Cognitive Impairment in OSA Mice by Down-regulating Glycolysis
10.13422/j.cnki.syfjx.20241403
- VernacularTitle:运脾化痰通窍方下调糖酵解调控小胶质细胞极化表型改善OSA小鼠炎症及认知障碍
- Author:
Wenyan PU
1
;
Anqi LIU
1
;
Yan LIN
1
;
Xuejun LI
1
;
Hongyu ZHANG
1
;
Zhiyan JIANG
1
Author Information
1. Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030,China
- Publication Type:Journal Article
- Keywords:
Yunpi Huatan Tongqiao prescription;
adenoid hypertrophy;
obstructive sleep apnea;
microglia;
M1/M2;
glycolysis
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2024;30(22):35-42
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo validate the efficacy of Yunpi Huatan Tongqiao prescription (YHTP) in down-regulating glycolysis to modulate microglia phenotype and improve inflammation and cognitive memory deficits in obstructive sleep apnea (OSA) mice. MethodForty-eight male Balb/C mice were randomly divided into a normal group, a model group, a montelukast sodium group (30 mg·kg-1), and low, medium, and high dose groups of YHTP (8.28, 16.56, and 33.12 g·kg-1), with 8 mice in each group. All groups, except the normal group, received intraperitoneal injections of lipopolysaccharide (LPS) and underwent chronic intermittent hypoxia (CIH) modeling for 4 weeks. Subsequently, the mice were treated with medications for 4 weeks and then sampled. Animal behavioral tests assessed memory impairment due to hypoxia. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to measure mRNA expression levels of M1-associated inflammatory factors interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and markers such as T lymphocyte activation antigen (CD86) and inducible nitric oxide synthase (iNOS), as well as M2-associated inflammatory factors interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and the marker mannose receptor (CD206) in hippocampal tissue. Western blot was employed to detect differences in the expression of M1 and M2 microglia phenotypic markers (CD86, CD206) and glycolysis-related proteins glucose transporter type 1 (GLUT1), hexokinase 2 (HK2), phosphofructokinase (PFKM), pyruvate kinase 2 (PKM2), and monocarboxylic acid transporter 1 (MCT1). ResultBehavioral tests showed that compared to the results in the normal group, the Y-maze autonomous alternation rate was significantly reduced in the model group (P<0.01). The latency time for the target hole in the Barnes' maze during the training period (days 2, 3, 4) and testing period (days 5, 12) was significantly increased (P<0.05, P<0.01). M1 glial cell markers CD86 and iNOS, as well as inflammatory factors IL-1β and TNF-α mRNA, were significantly elevated (P<0.01). In contrast, the mRNA expression of M2 glial cell markers IL-10, CD206, and TGF-β was significantly reduced (P<0.01). The protein expression of glycolytic proteins HK2, PFKM, PKM2, MCT1, and the M1 marker CD86 was significantly increased (P<0.05, P<0.01), while M2 marker CD206 protein expression was significantly decreased (P<0.01). Compared to the results in the model group, the Y-maze autonomous alternation rate was significantly increased in the medium and high dose groups of YHTP (P<0.05, P<0.01). The latency time for the target hole during the training (day 4) and testing periods (days 5, 12) was significantly reduced (P<0.01). Real-time PCR results indicated that mRNA expression levels of M1-related pro-inflammatory factors in the hippocampal tissue were significantly reduced in the low, medium, and high dose groups of YHTP (P<0.01), while M2-related inflammatory factors' mRNA expression was significantly increased (P<0.01). Western blot results showed that in the medium and high dose groups of YHTP, the expression of the M1 marker CD86 in the hippocampus was reduced, whereas the expression of the M2 marker CD206 was significantly increased (P<0.01), with a significant decrease in the expression of glycolysis-related proteins (P<0.01). ConclusionYHTP can improve inflammation and cognitive impairment induced by hypoxia in OSA model mice. This is achieved by downregulating glycolysis in brain microglia, inhibiting M1 activation, reducing pro-inflammatory factor release, and promoting M2 activation, thereby exerting a therapeutic effect on inflammation and cognitive impairment caused by OSA.