Classification of Mild Cognitive Impairment Using Functional Near-Infrared Spectroscopy-Derived Biomarkers With Convolutional Neural Networks
- Author:
Jin-Hyuck PARK
1
Author Information
- Publication Type:Original Article
- From:Psychiatry Investigation 2024;21(3):294-299
- CountryRepublic of Korea
- Language:English
-
Abstract:
Objective:To date, early detection of mild cognitive impairment (MCI) has mainly depended on paper-based neuropsychological assessments. Recently, biomarkers for MCI detection have gained a lot of attention because of the low sensitivity of neuropsychological assessments. This study proposed the functional near-infrared spectroscopy (fNIRS)-derived data with convolutional neural networks (CNNs) to identify MCI.
Methods:Eighty-two subjects with MCI and 148 healthy controls (HC) performed the 2-back task, and their oxygenated hemoglobin (HbO2) changes in the prefrontal cortex (PFC) were recorded during the task. The CNN model based on fNIRS-derived spatial features with HbO2 slope within time windows was trained to classify MCI. Thereafter, the 5-fold cross-validation approach was used to evaluate the performance of the CNN model.
Results:Significant differences in averaged HbO2 values between MCI and HC groups were found, and the CNN model could better discriminate MCI with over 89.57% accuracy than the Korean version of the Montreal Cognitive Assessment (MoCA) (89.57%). Specifically, the CNN model based on HbO2 slope within the time window of 20–60 seconds from the left PFC (96.09%) achieved the highest accuracy.
Conclusion:These findings suggest that the fNIRS-derived spatial features with CNNs could be a promising way for early detection of MCI as a surrogate for a conventional screening tool and demonstrate the superiority of the fNIRS-derived spatial features with CNNs to the MoCA.