Pharmacodynamic Substances in Promoting Osteogenic Differentiation of Epimedii Folium and Epimedii Wushanensis Folium Based on Chemical Fingerprint-cell Metabolomics Correlation Analysis
10.13422/j.cnki.syfjx.20240869
- VernacularTitle:基于化学指纹-细胞代谢组学相关性分析淫羊藿及巫山淫羊藿促成骨分化的药效物质基础
- Author:
Yunfen HUANG
1
;
Linchao ZHAO
1
;
Songnan WU
1
;
Fangzhu XU
1
;
Hui GAO
1
;
Xuelian CHEN
2
;
Zimin YUAN
1
;
Jing WANG
1
Author Information
1. School of Pharmacy,Liaoning University of Traditional Chinese Medicine,Dalian 116600,China
2. Shandong Maternal and Child Health Care Hospital,Jinan 250000,China
- Publication Type:Journal Article
- Keywords:
Epimedii Folium;
Epimedii Wushanensis Folium;
pharmacodynamic substances;
cell metabolomics;
chemical fingerprint;
promoting osteogenic differentiation;
ultra performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS)
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2024;30(17):155-163
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo determine the pharmacodynamic substance basis of Epimedii Folium(EF) and Epimedii Wushanensis Folium(EWF) in promoting osteogenic differentiation, and to establish a method to analyze the material basis of Chinese materia medica based on the correlation between chemical fingerprint and cellular metabolomics. MethodThe chemical fingerprints of 15 batches of EF with 4 species and 3 batches of EWF were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS), and partial least squares-discriminant analysis(PLS-DA) was used to analyze the peak areas of chemical fingerprints of samples. The effects of different samples on proliferative activity of MC3T3-E1 osteoblast precursors, as well as the activity of alkaline phosphatase(ALP) in osteoblasts were detected by cell counting kit-8(CCK-8) and enzyme-linked immunosorbent assay(ELISA). At the same time, UPLC-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to analyze the effects of different samples on the metabolomics of MC3T3-E1 cells, then metabolic peak table of osteogenic differentiation cells was constructed, and pharmacodynamic index mean Y0 was introduced into the peak table. PLS was used to calculate mean Y0 of each group, and the mean Y0 was added to the peak table of chemical fingerprint to construct the correlation between chemical fingerprint and cell metabolome, the pharmacodynamic components of EF and EWF that promote bone differentiation were screened according to variable importance in the projection(VIP) value>1. The pharmacodynamic effects of EF and EWF were evaluated according to the mean Y0 of each group. ResultThe chemical fingerprints of EF with different origins and EWF were completely separated. Compared with the blank group, the activity of MC3T3-E1 cells in EF and EWF groups was significantly increased, the activity of ALP in the Epimedium brevicornu(Gansu province), E. koreanum and E. pubescens groups was significantly increased(P<0.05). The results of cell metabolomics showed that the blank group and the model group had an obvious trend of separation. EF with different origins and EWF had different distance from the model group, indicating that EF with different origins and EWF had different effect on promoting osteogenic differentiation. Chemical fingerprint-cell metabolomics integration analysis screened 9 components closely related to the efficacy of EF and EWF, including diphylloside B, epimedin C, icariin, baohuoside Ⅰ, yinyanghuo B, β-anhydroicaritin, magnoflorine, cryptochlorogenic acid and quercetin. E. koreanum had the strongest effect on promoting osteogenic differentiation. ConclusionThis study determined that the material basis of EF and EWF promoting osteogenic differentiation were mostly flavonoids, alkaloids and organic acids, which provided ideas and methods for the screening of pharmacodynamic components and the prediction of therapeutic effect of Chinese materia medica.