Study on mechanism of berberine inhibiting tumor stem cells proliferation and its in vivo safety evaluation
- VernacularTitle:小檗碱抑制肿瘤干细胞增殖的机制研究及体内安全性评价
- Author:
Jinjin XIE
1
;
Yan CHEN
1
;
Xin DU
1
;
Yuke LI
1
;
Mengnan ZHAO
1
;
Sanjun SHI
1
Author Information
1. College of Pharmacy,Chengdu University of Traditional Chinese Medicine,Chengdu 611137,China
- Publication Type:Journal Article
- Keywords:
berberine;
tumor stem cells;
pyroptosis;
gasdermin E;
safety
- From:
China Pharmacy
2024;35(12):1443-1450
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE To investigate the in vitro inhibitory mechanism of berberine on the proliferation of tumor stem cells and evaluate its in vivo safety. METHODS Flow cytometry was used to select tumor stem cells from mouse skin melanoma B16F10 cells; CD44, CD133, Nanog homologous box protein (NANOG) and octamer-binding transcription factor 4 (OCT4) were used as indicators to characterize tumor stem cells. Tumor stem cells were divided into control group, all-trans retinoic acid (ATRA) group, and berberine group, and the CCK-8 method was used to detect the effects of berberine on the viability of tumor stem cells; flow cytometry was adopted to detect cell apoptotic rate, the proportion of CD44+/CD133+ and the positive cell rate of sex determining region Y box protein 2 (SOX2); the morphological changes of tumor balls were recorded after treatment with berberine; the morphology of cell pyroptosis in each group was recorded, and the release rate of lactate dehydrogenase (LDH) was detected; Western blot assay was adopted to detect the expressions of pyroptosis-related protein gasdermin E (GSDME), GSDME- N, caspase-3 and cleaved caspase-3. Preliminary evaluation of in vivo safety of berberine was conducted by using zebrafish embryo toxicity experiments. RESULTS Compared with B16F10 cells, the proportion of CD44+/CD133+ cells in tumor stem cells and the fluorescence intensity of NANOG and OCT4 were significantly increased (P<0.000 1). The half-inhibitory concentration of berberine to tumor stem cells was 50.98 μmol/L. Compared with the control group, the apoptotic rate of cells in the berberine group was significantly increased, while the proportion of CD44+/CD133+ cells and the rate of SOX2 positive cells were reduced significantly (P<0.000 1); tumor stem cell spheroids were atrophied, with partial cell death. After treatment with berberine, tumor stem cells exhibited swelling in their outermost layer, the release rate of LDH of cells was significantly increased and the release rate of LDH increased with increasing dose; the protein expressions of GSDME-N and cleaved-caspase-3 of cells in berberine 20, 40 μmol/L groups were significantly increased, and the protein expressions of GSDME and caspase-3 were significantly reduced (except for berberine 20 μmol/L group, P<0.05). The embryonic development of zebrafish treated with berberine was almost unaffected, and the survival rate of embryo reached 100%, with no obvious abnormalities observed. CONCLUSIONS Berberine has good activity against the proliferation of tumor stem cells, and its mechanism of action may be related to activating GSDME and promoting cell pyroptosis; berberine has good in vivo safety.