Comparison of Wild and Cultivated Bupleurum chinense Based on Traditional Quality Evaluation
10.13422/j.cnki.syfjx.20240868
- VernacularTitle:基于传统品质评价的野生与栽培北柴胡比较
- Author:
Yunxiang LIU
1
;
Yapeng WANG
1
;
Liping KANG
1
;
Zhilai ZHAN
1
;
Tiegui NAN
1
Author Information
1. National Resource Center for Chinese Materia Medica,State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,China Academy of Chinese Medical Sciences,Beijing 100700,China
- Publication Type:Journal Article
- Keywords:
Bupleurum chinense;
wild;
cultivation;
traditional quality evaluation;
characters;
chemical compositions;
metabonomics
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2024;30(14):145-155
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveIn order to understand the quality differences between wild and cultivated Bupleurum chinense(BC), modern analytical techniques were used to systematically compare the quality of wild and cultivated BC in terms of appearance characteristics, primary and secondary metabolites. MethodSamples of wild and cultivated BC were collected from the main production areas of Shanxi, Shaanxi and Hebei, and images of BC were collected and their length and diameter were measured using vernier caliper to compare and analyze the characteristics of the two. Referring to the method under extract of CP in the 2020 edition of Chinese Pharmacopoeia, the extract contents of the two species were determined. The cellulose, hemicellulose and lignin compositions of both were determined using fiber analyzer. Quantitative determination of representative saikosaponins, flavonoids and saccharides in BC by ultra performance liquid chromatography(UPLC), headspace gas chromatography-mass spectrometry(HS-GC-MS) was used to determine the types and relative contents of volatile components, and UPLC-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) coupled with multivariate statistical analysis was used to screen and identify the differential compounds between wild and cultivated BC. ResultThere were significant differences in the appearance characteristics between wild and cultivated BC, the wild BC had a large root head, twisted and thick axial root, rough epidermis, and often had a stem base and lateral root with dark color and strong odor. However, the cultivated BC has long and straight taproots, delicate epidermis, few lateral roots, light root color and light smell. In terms of primary and secondary metabolites, the contents of alcohol-soluble extract and lignin of wild BC was significantly higher than those of cultivated BC, while the contents of water soluble extract and quercitrin was higher than those of cultivated BC, but the difference was not significant. The contents of cellulose, five saikosaponins, rutin, narcissoside and isorhamnetin-3-O-glucoside in cultivated BC were significantly higher than those of wild BC, and the total water-soluble polysaccharides, sucrose, hemicellulose and starch of cultivated BC were higher than those of wild BC, but the difference was not significant. The results of HS-GC-MS identification showed that a total of 67 volatile components were identified in wild and cultivated BC, 59 in wild BC and 51 in cultivated BC, with a total of 43 compounds in both, and the screening based on variable importance in the projection(VIP) value>1 revealed that the differential components were mainly concentrated in the aromatic and fatty acid compounds. The results of UPLC-Q-TOF-MS-based non-targeted metabolomics combined with multivariate statistical analysis showed that the two were significantly different in saikosaponins and the differential compounds had higher response values in cultivated BC. ConclusionThere are significant differences in the appearance, primary and secondary metabolite contents between wild and cultivated BC. At present, the quality evaluation system of cultivated BC is not perfect, and this study provides theoretical references for updating and revising the quality evaluation standard of cultivated BC and guiding the production of high-quality BC.