Implication of Qidi Tangshen Prescription (QDTS) on Podocyte Pyroptosis in Diabetes Nephropathy by Regulating MAPK14/RELA/Caspase-8 Signaling Pathway
10.13422/j.cnki.syfjx.20240141
- VernacularTitle:芪地糖肾方对糖尿病肾病足细胞焦亡及MAPK14/RELA/Caspase-8信号通路的影响
- Author:
Fei GAO
1
;
Borui YU
2
;
Huidi XIE
3
;
Ying ZHOU
4
;
Yang SHI
2
;
Xianhui ZHANG
2
;
Hongfang LIU
2
Author Information
1. Beijing Chaoyang District Hospital of Traditional Chinese Medicine, Beijing 100020, China
2. Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
3. General Hospital of the People's Liberation Army of China, Beijing 100853, China
4. Beijing Puren Hospital, Beijing 100062, China
- Publication Type:Journal Article
- Keywords:
Qidi Tangshen prescription;
diabetes nephropathy;
podocyte damage;
pyroptosis;
molecular mechanism
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2024;30(13):67-75
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo explore the molecular mechanism of Qidi Tangshen prescription (QDTS) in regulating podocyte pyroptosis in diabetes nephropathy (DN). MethodThrough in vivo experiment, db/db mice were divided into the model group, QDTS group (3.34 g·kg-1), valsartan capsule group (10.29 mg·kg-1), with db/m mice serving as the normal control. Each group consisted of 8 mice, and they underwent continuous intervention for 8 weeks. After the last administration, mice were euthanized, and kidney pathological changes were observed. Additionally, the expression levels of pyroptosis-related indicators, including NOD-like receptor protein 3 (NLRP3), Gasdermin D protein (GSDMD), and interleukin-1β (IL-1β) protein, were examined. Through in vitro experiment, mouse podocytes were divided into the normal glucose group (5.5 mmol·L-1 glucose), high glucose group (35 mmol·L-1 glucose), DMSO group (35 mmol·L-1 glucose+200 mg·L-1 DMSO), and QDTS group (35 mmol·L-1 glucose+200 mg·L-1 QDTS freeze-dried powder). After 48 hours of intervention, the expression levels of NLRP3, GSDMD, and IL-1β proteins were measured in podocytes. A drug-ingredient-target-disease interaction network for QDTS in the treatment of DN was constructed by network pharmacology methods. The key signaling pathways regulating podocyte pyroptosis were analyzed, and validation was conducted through in vivo and in vitro experiments. ResultCompared with normal group, glomerular hyperplasia and glomerular basement membrane thickening were observed in model group, and some segments were accompanied by obvious podocellular process fusion. The protein expressions of NLRP3, GSDMD and IL-1β in mouse kidney were increased, the protein expressions of mitogen-activated protein kinase 14 (MAPK14), V-Rel reticuloendotheliosis virus oncogene homology A (RELA) and Caspase-8 in mouse kidney were increased (P<0.05). Compared with model group, kidney pathological injury of mice in QDTS group was significantly reduced, and the expressions of NLRP3, GSDMD and IL-1β in kidney of mice in QDTS group and valsartan group were decreased (P<0.05). The protein expressions of MAPK14, RELA and Caspase-8 in kidney of mice in QDTS group and valsartan group were decreased (P<0.05). Network pharmacology results showed that there were 16 targets for QDTS to regulate DN cell pyrodeath, among which MAPK14, RELA and Caspase-8 were the key targets. Compared with normal glucose group, the protein expressions of NLRP3, GSDMD and IL-1β in high glucose group were increased (P<0.05), and the protein expressions of MAPK14, RELA and Caspase-8 in mouse podocytes were increased (P<0.05). Compared with high glucose group, the expressions of NLRP3, GSDMD and IL-1β in podocytes of mice in QDTS group were decreased (P<0.05), and the expressions of MAPK14, RELA and Caspase-8 in podocytes of mice in QDTS group were decreased (P<0.05). ConclusionQDTS reduces damage to DN podocytes, which is associated with its regulation of the MAPK14/RELA/Caspase-8 signaling pathway and inhibition of podocyte pyroptosis.