Mechanism of Yes-Associated Protein 1 Ameliorating Aristolochic Acid 1-Induced Liver Injury in Mice Based on Untargeted Metabolomics Techniques
10.19378/j.issn.1003-9783.2024.01.006
- VernacularTitle:基于非靶向代谢组学技术探讨Yes相关蛋白1改善马兜铃酸I诱导小鼠肝损伤的机制
- Author:
Yu XUE
1
;
Caige LI
;
Yiwei LIU
;
Jiali YANG
;
Zhiqin ZHANG
;
Jingmin JI
;
Kun YU
;
Xinli SHI
Author Information
1. 河北中医药大学,河北 石家庄 050200
- Keywords:
Yes-associated protein 1;
aristolochic acid I;
pharmacological liver injury;
metabolomics;
choline metabolism;
mice
- From:
Traditional Chinese Drug Research & Clinical Pharmacology
2024;35(1):46-55
- CountryChina
- Language:Chinese
-
Abstract:
Objective To investigate the mechanism of Yes-associated protein 1(YAP1)ameliorating aristolochic acid 1(AAI)-induced liver injury in mice based on untargeted metabolomics techniques.Methods There were 83-week-old male hepatocyte-specific Yap1 gene knockout mice(genotyped as Yap1Flox/Flox,Albumin-Cre,aka.Yap1LKO)were randomly selected as the Yap1LKO+AAI group,and 8 Yap1Flox control mice as the Yap1Flox+AAI group.Both groups were injected intraperitoneally with AAI at a dose of 2.5 mg·kg-1·d-1 for 14 consecutive days.Genotypes were identified by tail PCR;serum alanine transaminase(ALT)and aspartate transaminase(AST)activities were determined by microplate assay;histopathological changes of liver tissue were observed by HE staining;and the protein expression of YAP1 in liver tissue was determined by immunohistochemistry.The untargeted metabolomics approach was used to analyze the liver tissue differential metabolites,and the samples were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbit trap high-resolution mass spectrometry,and the differential metabolites were screened by principal component analysis(PCA),Partial least square-discriminant analysis(PLS-DA),and orthogonal partial least squares-discriminant analysis(OPLS-DA);using HMDB database and METLIN database to identify metabolites,and the pathway enrichment of differential metabolites was analyzed by KEGG database.Results(1)After 14 days of AAI induction,the increase of body mass in Yap1LKO mice was lower than that in Yap1Flox mice,but there was no statistical significance(P>0.05).On day 14,compared with the Yap1Flox+AAI group,the serum ALT and AST enzyme activities in the Yap1LKO+AAI group of mice were significantly increased(P<0.05),and the histopathological damage of the liver was significantly aggravated.The livers of the Yap1Flox mice had a positive protein expression of YAP1,whereas the Yap1LKO mice did not have a positive protein expression of YAP1.(2)A total of 139 differential metabolites with significant changes(VIP>1 and P<0.05)were screened by metabonomic analysis;compared with Yap1LKO+ AAI group,62 liver metabolites in Yap1Flox+AAI group were up-regulated,including choline,taurine,hypotaurine,α-linolenic acid,eleostearic acid,chenodeoxycholic acid and so on.Seventy-seven metabolites were down-regulated including glycerophosphocholine,L-phosphatidylcholine,L-glutamine,L-serine,L-glutathione,5-methionine,phenylalanine,glucose 6-phosphate,lactic acid,uric acid glycosides,etc..KEGG-enriched pathways were mainly choline metabolism,glycerophospholipid metabolism,insulin resistance,glutathione metabolism,etc..Conclusion Hepatocyte-specific Yap1 gene knockout exacerbated AAI-induced liver injury in mice,and YAP1 was involved in the regulation of choline metabolism and glycerophospholipid metabolism through the up-regulation of unsaturated fatty acids,such as choline and taurine,which ameliorated AAI-induced liver injury in mice.