Value of left ventricular shape index and eccentricity index of gated myocardial perfusion imaging in the evaluation of left ventricular remodeling in patients with myocardial infarction
10.3760/cma.j.cn321828-20221231-00378
- VernacularTitle:门控心肌灌注显像左心室形态指数和偏心指数在评估心肌梗死患者左心室重构中的价值
- Author:
Xiaoyi XI
1
;
Luxia WANG
;
Qi YAO
;
Shihao HUANGFU
;
Yuxin XIAO
;
Zhifang WU
;
Ping WU
;
Li LI
;
Rui YAN
;
Yuetao WANG
;
Minfu YANG
;
Sijin LI
Author Information
1. 山西医科大学第一医院核医学科、分子影像精准诊疗省部共建协同创新中心,太原 030001
- Keywords:
Myocardial infarction;
Ventricular remodeling;
Myocardial perfusion imaging;
Technetium Tc 99m sestamibi
- From:
Chinese Journal of Nuclear Medicine and Molecular Imaging
2024;44(1):6-11
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To investigate the clinical value of left ventricular shape index (SI) and eccentricity index (EI) in evaluating left ventricular remodeling.Methods:A retrospective analysis was performed on 324 patients (264 males, 60 females, age (62.5±11.8) years) diagnosed with myocardial infarction (MI) and 113 healthy controls (HC; 47 males, 66 females, age (57.8±10.7) years) who received gated myocardial perfusion imaging (GMPI) in First Hospital of Shanxi Medical University from January 2016 to September 2020. SI (end-diastolic SI (EDSI), end-systolic SI (ESSI)), EI and left ventricular function parameters (end-diastolic volume (EDV), end-systolic volume (ESV), left ventricular ejection fraction (LVEF), summed motion score (SMS), summed thickening score (STS), peak ejection rate (PER) and peak filling rate (PFR)) were obtained by quantitative gated SPECT (QGS) software. Propensity score (PS) inverse probability of treatment weighting (IPTW) was used to balance the intergroup covariates. The differences and correlations of EDSI, ESSI, EI and left ventricular function parameters between patients in MI group and HC group were analyzed. ROC curve analysis was used to evaluate the values of EDV, EDSI, ESSI and EI alone and in combination in the assessment of left ventricular systolic function impairment. Data were analyzed by independent-sample t test, Pearson correlation and Spearman rank correlation analyses, and Delong test. Results:After IPTW, EDSI and ESSI in MI group ( n=319) were higher than those in HC group ( n=133; EDSI: 0.66±0.09 vs 0.60±0.06; ESSI: 0.59±0.11 vs 0.47±0.07; t values: 8.05, 14.67, both P<0.001), and EI was lower than that in HC group (0.81±0.06 vs 0.85±0.03; t=-8.93, P<0.001). In both groups, there were significant correlations between EDSI and ESSI ( r values: 0.928, 0.873), between EDSI, ESSI and EI ( r values: from -0.831 to -0.641), between EDSI, ESSI and LVEF ( r values: from -0.627 to -0.201), between ESSI and EDV, ESV and SMS ( rs values: 0.336-0.584), between ESSI and -PER, PFR ( rs values: from -0.406 to -0.402, r values: from -0.352 to -0.325) (all P<0.01). ROC curve analysis showed that EDV (AUC: 0.895) and ESSI (AUC: 0.839) had the highest efficacy in evaluating left ventricular systolic function impairment in MI group and HC group, respectively. EDV-EDSI-ESSI-(1-EI) had higher efficacy in the assessment of impaired left ventricular systolic function in MI group (AUC: 0.956), which was higher than that of EDV or EDV-EDSI or EDV-ESSI or EDV-(1-EI) ( z values: from -2.64 to -2.18, P values: 0.008-0.029); EDV-EDSI-ESSI-(1-EI) also had high efficacy in HC group (AUC: 0.911), which was higher than that of EDV or EDV-EDSI or EDV-(1-EI) ( z values: from -2.60 to -2.43, P values: 0.009-0.015). Conclusions:In MI patients, the increase of SI and the decrease of EI indicate the increase of left ventricular sphericity and the aggravation of left ventricular remodeling. SI and EI have certain clinical application values in evaluating left ventricular morphology, predicting left ventricular remodeling and left ventricular systolic function impairment.