Biomechanical changes of the cervical spine in internal fixation with different anterior cervical interbody fusion systems
- VernacularTitle:不同颈椎前路椎间融合系统内固定颈椎的生物力学变化
- Author:
Qiang WANG
1
;
Shiyun LI
;
Ying XIONG
;
Tiantian LI
Author Information
- Keywords: anterior cervical internal fixation system; Low-P type; Zero-P type; cervical spine; biomechanics; finite element analysis
- From: Chinese Journal of Tissue Engineering Research 2024;28(6):821-826
- CountryChina
- Language:Chinese
- Abstract: BACKGROUND:Due to the treatment of cervical spondylosis,the Zero-P system of the anterior cervical interbody fusion system will have problems such as screw loosening and fracture after operation,so a novel Low-P system has been developed. OBJECTIVE:To compare the effects of the novel Low-P and Zero-P anterior cervical intervertebral fusion systems on the biomechanical properties of adjacent segments of the cervical spine and to perform stress analysis on the internal fixation system,so as to provide a theoretical reference for clinical treatment. METHODS:A complete model of the C1-C7 segment of the cervical spine was established.Based on the effectiveness of the model,a finite element model of Low-P(type Z Low-P and type H Low-P)and Zero-P system implanted in C4-C5 segments was established.The stress distribution of implanted devices and adjacent vertebral nucleus pulposus,fibrous rings and end plates was analyzed under the conditions of forward flexion,posterior extension,lateral bending and rotation. RESULTS AND CONCLUSION:(1)After implantation of Low-P and Zero-P internal fixation devices,the range of motion of the type H Low-P system was large;the maximum stress value of type Z Low-P system was small;the maximum stress of Zero-P on the nucleus pulposus of adjacent segments was large;the maximum stress of end plate was small.(2)The influence of three internal fixation systems on adjacent segment fiber rings was close.(3)The screw stress of the Zero-P internal fixation system was much greater than that of the Low-P system.(4)It is indicated that compared with Zero-P type internal fixation system,the novel Low-P system reduces the stress value of steel plate and screw,which can reduce screw loosening and internal fixation system failure.The Low-P system has less stress on the nucleus pulposus of adjacent discs and reduces disc degeneration in adjacent segments.This paper provides a theoretical basis for the clinical study of a Low-P type internal fixation system.