Differential characteristics of motor development levels, inhibitory control and cognitive flexibility processing in preschool children
10.16835/j.cnki.1000-9817.2024060
- VernacularTitle:幼儿动作发展水平与抑制控制和认知灵活性加工的差异
- Author:
ZHENG Quanliang, WANG Tingzhao, SHI Bing, CHI Aiping, NING Ke
1
Author Information
1. School of Physical Education, Xi an FanYi University, Xi an (710105) , Shaanxi Province, China
- Publication Type:Journal Article
- Keywords:
Motor development;
Executive function;
Growth and development;
Child, preschool
- From:
Chinese Journal of School Health
2024;45(2):258-262
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To explore the neural processing differences in inhibitory control and cognitive flexibility associated with motor development levels in preschool children, so as to provide a basis for motor learning and cognitive development in preschool children.
Methods:From March 20 to 31 in 2023, a total of 84 preschool children aged 4-6 were recruited from two kindergartens in Xi an City. The MOBAK-KG Motor Development Assessment Scale was used to assess the children s motor development levels. The Go/no go task paradigm was employed to test inhibitory control ability, and the Dimensional Change Card Sort (DCCS) task paradigm was utilized to evaluate cognitive flexibility. Functional near infrared spectroscopy (fNIRS) was used to monitor the preschool children s prefrontal cortex oxygenation dynamics during inhibitory control and cognitive flexibility tasks. Malab software and Homer 2 plugins were used to calculate prefrontal oxygenated hemoglobin concentration of preschool children during the tasks.
Results:The high motor skills group exhibited significantly higher task accuracy during inhibitory control and cognitive flexibility tasks [0.95(0.92, 0.97),(0.54±0.12)] compared to the low motor skill group[0.93(0.85, 0.97),(0.45±0.13)] ( Z/t =-2.09, 3.14 , P <0.05). During the inhibitory control task, the high motor skill group [0.24(0.10,0.41), 0.34(0.16,0.62), 0.30(0.07, 0.52 ), 0.26(0.09, 0.53), 0.15(0.01, 0.43), 0.34(0.10, 0.67)mol/L] showed significantly higher oxygenated hemoglobin concentrations in the left and right dorsolateral prefrontal cortices (L-DLPFC, R-DLPFC), left and right pars triangular Broca s areas ( L- PTBA, R-PTBA), and left and right frontopolar areas (L-FPA, R-FPA) compared to the low motor skill group [0.04( -0.13 , 0.15), 0.00(-0.12, 0.11), -0.01(-0.17, 0.14), 0.04(-0.14, 0.16), -0.01(-0.16, 0.12), -0.03(-0.21, 0.15) mol/L ] ( Z=-4.83, -5.57, -4.77, -4.10, -3.45, -5.74, P <0.01). During the cognitive flexibility task, the high motor skill group[0.21(0.03, 0.36), 0.28(0.15, 0.45), 0.15(0.05, 0.30), 0.20(0.05, 0.37), 0.04(-0.17, 0.26), 0.14(-0.08, 0.40) mol/L ] exhibited significantly higher oxygenated hemoglobin concentrations in the L-DLPFC, R-DLPFC, L-PTBA, R-PTBA, L- FPA, R-FPA brain regions compared to the low motor skill group [0.02(-0.20, 0.23), 0.02(-0.12, 0.21), 0.00(-0.22, 0.16 ), 0.00(-0.16, 0.15), -0.05(-0.25, 0.06), 0.01(-0.23, 0.20)mol/L] ( Z=-3.63, -4.45, -3.58, -3.75, -2.18, -1.98 , P <0.05).
Conclusions:The motor development level in preschool children is closely related to inhibitory control and cognitive flexibility. It is crucial to emphasize motor learning in early childhood to further promote holistic development of both mind and body.