Wedelolactone alleviates hyperoxia-induced acute lung injury by regulating ferroptosis.
10.3760/cma.j.cn121430-20230324-00212
- Author:
Junya LIU
1
;
Song QIN
1
;
Banghai FENG
2
;
Miao CHEN
1
;
Hong MEI
1
Author Information
1. Department of Critical Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China.
2. Department of Critical Care Medicine, Zunyi City Hospital of Traditional Chinese Medicine, Zunyi 563000, Guizhou, China. Corresponding author: Mei Hong, Email: 2448789732@qq.com.
- Publication Type:Journal Article
- MeSH:
Mice;
Animals;
Hyperoxia;
Ferroptosis;
Tumor Necrosis Factor-alpha;
Interleukin-6;
Actins;
Mice, Inbred C57BL;
Acute Lung Injury/drug therapy*;
Lung;
Oxygen;
Superoxide Dismutase
- From:
Chinese Critical Care Medicine
2023;35(11):1177-1181
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE:To study whether wedelolactone can reduce hyperoxia-induced acute lung injury (HALI) by regulating ferroptosis, and provide a basic theoretical basis for the drug treatment of HALI.
METHODS:A total of 24 C57BL/6J mice were randomly divided into normal oxygen control group, HALI model group and wedelolactone pretreatment group, with 8 mice in each group. Mice in wedelolactone pretreatment group were treated with wedelolactone 50 mg/kg intraperitoneally for 6 hours, while the other two groups were not given with wedelolactone. After that, the HALI model was established by maintaining the content of carbon dioxide < 0.5% and oxygen > 90% in the molding chamber for 48 hours, and the normal oxygen control group was placed in indoor air. After modeling, the mice were sacrificed and lung tissues were collected. The lung histopathological changes were observed under light microscope and pathological scores were performed to calculate the ratio of lung wet/dry mass (W/D). The levels of tumor necrosis factor-α (TNF-α), interleukins (IL-6, IL-1β), superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) in lung tissues of mice in each group were determined. The protein expression of glutathione peroxidase 4 (GPX4) in lung tissue was detected by Western blotting.
RESULTS:Under light microscope, the alveolar structure of HALI model group was destroyed, and a large number of neutrophils infiltrated the alveolar and interstitial lung, and the interstitial lung was thickened. The pathological score of lung injury (score: 0.75±0.02 vs. 0.11±0.01) and the ratio of lung W/D (6.23±0.34 vs. 3.68±0.23) were significantly higher than those in the normal oxygen control group (both P < 0.05). Wedelolactone pretreated mice had clear alveolar cavity and lower neutrophil infiltration and interstitial thickness than HALI group. Pathological scores (score: 0.43±0.02 vs. 0.75±0.02) and W/D ratio (4.56±0.12 vs. 6.23±0.34) were significantly lower than HALI group (both P < 0.05). Compared with the normal oxygen control group, the levels of SOD (kU/g: 26.41±4.25 vs. 78.64±3.95) and GSH (mol/g: 4.51±0.33 vs. 12.53±1.25) in HALI group were significantly decreased, while the levels of MDA (mmol/g: 54.23±4.58 vs. 9.65±1.96), TNF-α (μg/L: 96.32±3.67 vs. 11.65±2.03), IL-6 (ng/L: 163.35±5.89 vs. 20.56±3.63) and IL-1β (μg/L: 72.34±4.64 vs. 15.64±2.47) were significantly increased, and the protein expression of GPX4 (GPX4/β-actin: 0.44±0.02 vs. 1.00±0.09) was significantly decreased (all P < 0.05). Compared with the HALI group, the levels of SOD (kU/g: 53.28±3.69 vs. 26.41±4.25) and GSH (mol/g: 6.73±0.97 vs. 12.53±1.25) were significantly higher in the wedelolactone pretreatment group, and the levels of MDA (mmol/g: 25.36±1.98 vs. 54.23±4.58), TNF-α (μg/L: 40.25±4.13 vs. 96.32±3.67), IL-6 (ng/L: 78.32±4.65 vs. 163.35±5.89), and IL-1β (μg/L: 30.65±3.65 vs. 72.34±4.64) were significantly lower (all P < 0.05), and protein expression of GPX4 was significantly higher (GPX4/β-actin: 0.68±0.04 vs. 0.44±0.02, P < 0.05).
CONCLUSIONS:Wedelolactone attenuates HALI injury by regulating ferroptosis.