Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.
10.1007/s11655-023-3710-4
- Author:
Quan GAO
1
;
Lin LI
1
;
Qi-Man ZHANG
1
;
Qin-Song SHENG
2
;
Ji-Liang ZHANG
3
;
Li-Jun JIN
4
;
Rui-Yan SHANG
5
Author Information
1. School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China.
2. Department of Colorectal Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
3. Beijing Tong Ren Tang Chinese Medicine Co., Ltd., Beijing, 100000, China.
4. Department of Traditional Chinese Medicine, Hangzhou Shangcheng District People's Hospital, Hangzhou, China. 58646061@qq.com.
5. Department of Gynecology, Hangzhou Women's Hospital, Hangzhou, 310008, China. ruiyanshanghzfcyy@163.com.
- Publication Type:Journal Article
- Keywords:
Chinese medicine;
anticancer activity;
colorectal cancer cells;
monotropein;
network pharmacology
- MeSH:
Humans;
Proto-Oncogene Proteins c-akt/metabolism*;
Cell Proliferation;
Matrix Metalloproteinase 9;
Molecular Docking Simulation;
Cell Cycle;
ErbB Receptors;
Apoptosis;
Colorectal Neoplasms/pathology*;
Cell Line, Tumor
- From:
Chinese journal of integrative medicine
2024;30(1):25-33
- CountryChina
- Language:English
-
Abstract:
OBJECTIVE:To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification.
METHODS:Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway.
RESULTS:The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway.
CONCLUSION:Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.