Construction of competitive endogenous RNA network mediated by lung ischemia-reperfusion core genes
10.3969/j.issn.1674-7445.2023166
- VernacularTitle:肺缺血-再灌注核心基因介导的竞争性内源性RNA网络的构建
- Author:
Xiaofeng LI
1
;
Mingzheng TANG
1
;
Xixi LIU
1
;
Ziqing SONG
1
;
Guoxin ZHANG
2
;
Kaiyin YANG
2
;
Lingyun ZHANG
2
Author Information
1. First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China.
2. .
- Publication Type:OriginalArticle
- Keywords:
Lung transplantation;
Ischemia-reperfusion injury;
Core gene;
Competitive endogenous RNA (ceRNA);
Micro RNA;
Long non-coding RNA;
Circular RNA;
Signal pathway
- From:
Organ Transplantation
2024;15(1):70-81
- CountryChina
- Language:Chinese
-
Abstract:
Objective To analyze the core genes of lung ischemia-reperfusion injury and construct a competitive endogenous RNA (ceRNA) network. Methods Original data of GSE145989 were downloaded from the Gene Expression Omnibus (GEO) database as the training set, and the GSE172222 and GSE9634 datasets were used as the validation sets, and the differentially-expressed genes (DEG) were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Protein-protein interaction (PPI) network was constructed, and the core genes were screened, and the diagnostic values of these core genes and the immune infiltration levels of immune cells were evaluated. The ceRNA network was constructed and validated. The targeted drugs based on ceRNA network were assessed. Results A total of 179 DEG were identified, including 61 down-regulated and 118 up-regulated genes. GO analysis showed that DEGs were associated with multiple biological processes, such as cell migration, differentiation and regulation, etc. They were correlated with cell components, such as vesicle membrane, serosa and membrane raft, etc. They were also associated with multiple molecular functions, such as chemokine receptor, G protein-coupled receptor, immune receptor activity and antigen binding, etc. KEGG pathway enrichment analysis revealed that DEG were involved in tumor necrosis factor (TNF), Wnt, interleukin (IL)-17 and nuclear factor (NF)-κB signaling pathways, etc. PPI network suggested that CD8A, IL2RG, STAT1, CD3G and SYK were the core genes of lung ischemia-reperfusion injury. The ceRNA network prompted that miR-146a-3p, miR-28-5p and miR-593-3p were related to the expression level of CD3G. The miR-149-3p, miR-342-5p, miR-873-5p and miR-491-5p were correlated with the expression level of IL-2RG. The miR-194-3p, miR-512-3p, miR-377-3p and miR-590-3p were associated with the expression level of SYK. The miR-590-3p and miR-875-3p were related to the expression level of CD8A. The miR-143-5p, miR-1231, miR-590-3p and miR-875-3p were associated with the expression level of STAT1. There were 13 targeted drugs for CD3G, 4 targeted drugs for IL-2RG, 28 targeted drugs for SYK and 3 targeted drugs for lncRNA MUC2. No targeted drugs were identified for CD8A, STAT1 and other ceRNA network genes. Conclusions CD8A, IL2RG, STAT1, CD3G and SYK are the core genes of lung ischemia-reperfusion injury. The research and analysis of these core genes probably contribute to the diagnosis of lung ischemia-reperfusion injury and providing novel research ideas and therapeutic targets.