Effects of sevoflurane on metalloproteinase and natural killer group 2, member D (NKG2D) ligand expression and natural killer cell-mediated cytotoxicity in breast cancer: an in vitro study
- Author:
Hyae Jin KIM
1
;
Soeun JEON
;
Hyeon Jeong LEE
;
Jaeho BAE
;
Hyun-Su RI
;
Jeong-Min HONG
;
Sung In PAEK
;
Seul Ki KWON
;
Jae-Rin KIM
;
Seungbin PARK
;
Eun-Jung YUN
Author Information
- Publication Type:Experimental Research Article
- From:Korean Journal of Anesthesiology 2023;76(6):627-639
- CountryRepublic of Korea
- Language:English
-
Abstract:
Background:We investigated the effects of sevoflurane exposure on the expression of matrix metalloproteinase (MMP), expression and ablation of natural killer group 2, member D (NKG2D) ligands (UL16-binding proteins 1–3 and major histocompatibility complex class I chain-related molecules A/B), and natural killer (NK) cell-mediated cytotoxicity in breast cancer cells.
Methods:Three human breast cancer cell lines (MCF-7, MDA-MB-453, and HCC-70) were incubated with 0 (control), 600 (S6), or 1200 μM (S12) sevoflurane for 4 h. The gene expression of NKG2D ligands and their protein expression on cancer cell surfaces were measured using multiplex polymerase chain reaction (PCR) and flow cytometry, respectively. Protein expression of MMP-1 and -2 and the concentration of soluble NKG2D ligands were analyzed using western blotting and enzyme-linked immunosorbent assays, respectively.
Results:Sevoflurane downregulated the mRNA and protein expression of the NKG2D ligand in a dose-dependent manner in MCF-7, MDA-MB-453, and HCC-70 cells but did not affect the expression of MMP-1 or -2 or the concentration of soluble NKG2D ligands in the MCF-7, MDA-MB-453, and HCC-70 cells. Sevoflurane attenuated NK cell-mediated cancer cell lysis in a dose-dependent manner in MCF-7, MDA-MB-453, and HCC-70 cells (P = 0.040, P = 0.040, and P = 0.040, respectively).
Conclusions:Our results demonstrate that sevoflurane exposure attenuates NK cell-mediated cytotoxicity in breast cancer cells in a dose-dependent manner. This could be attributed to a sevoflurane-induced decrease in the transcription of NKG2D ligands rather than sevoflurane-induced changes in MMP expression and their proteolytic activity.