1.Recent development of Pichia pastoris system: current status and future perspective.
Chinese Journal of Biotechnology 2015;31(6):929-938
With more than 20 years of development, Pichia pastoris system has been extensively used both on a lab and industrial scale. This review outlines the progress made on P. pastoris from aspects of protein expression, molecular engineering tools and methods, and biochemical production. This review also provides perspectives on the current challenges and future directions of this important system.
Bioengineering
;
Industrial Microbiology
;
Pichia
2.Preface for special issue on industrial biology (2019).
Chinese Journal of Biotechnology 2019;35(10):1801-1805
Industrial biotechnology promises to make a significant contribution in enabling the sustainable development, and need the solid support from its basic discipline. As the basis of industrial biotechnology, industrial biology is to study the basic laws and mechanisms of biological behavior in industrial environment and to solve the key scientific problems for understanding, designing and constructing the organisms adapted to the application of industrial environment. In order to comprehend the status of industrial biology, we published this special issue to review the progress and trends of industrial biology from the three aspects of industrial protein science, cell science and fermentation science, respectively, for laying the foundation for the development of industrial biotechnology.
Biotechnology
;
Fermentation
;
Industrial Microbiology
3.Progress in intelligent control of industrial bioprocess.
Xiwei TIAN ; Guan WANG ; Siliang ZHANG ; Yingping ZHUANG
Chinese Journal of Biotechnology 2019;35(10):2014-2024
Industrial bioprocess is a complex systematic process and bio-manufacturing can be realized on the basis of understanding the metabolism process of living cells. In this article, the multi-scale optimization principle and practice of industrial fermentation process are reviewed, including multi-scale optimizing theory and equipment, on-line sensing technology for cellular macroscopic metabolism, and correlated analysis of physiological parameters. Furthermore, intelligent control of industrial bioprocess is further addressed, in terms of new sensing technology for intracellular physiological metabolism, big database establishment and data depth calculation, intelligent decision.
Bioreactors
;
Biotechnology
;
Fermentation
;
Industrial Microbiology
4.Progress in inverse metabolic engineering.
Guiying LI ; Xinbo ZHANG ; Zhiwen WANG ; Ying SHI ; Tao CHEN ; Xueming ZHAO
Chinese Journal of Biotechnology 2014;30(8):1151-1163
In the last few years, high-throughput (or 'next-generation') sequencing technologies have delivered a step change in our ability to sequence genomes, whether human or bacterial. Further comparative genome analysis enables us to reveal detailed knowledge of genetics or physiology of industrial important strains obtained in laboratory, to analyze genotype-phenotype correlations of mutants with improved performance. Based on identified key mutations or mutation combinations, Inverse Metabolic Engineering (IME) can be performed by using accurate genetic modification system. Recently, IME has been successfully used for strain improvement and has become a research hotspot, including improving substrate utilization, engineering the robustness of industrial microbes and enhancing production of bio-based products. Here, we describe recent advances in research methods of IME, with an emphasis on characterization of genotype-phenotype and the latest advances and application of IME. Possible directions and challenges for further development of IME are also discussed.
Industrial Microbiology
;
trends
;
Metabolic Engineering
;
trends
;
Mutation
5.Progress in microbial synthesis and application of polymalic acid.
Yuanyuan WANG ; Yufen QUAN ; Cunjiang SONG
Chinese Journal of Biotechnology 2014;30(9):1331-1340
Polymalic acid, known as a bioactive material, is completely biodegradable, and has far reaching application potential in medical field. Combined with our own findings, we summarized advances in polymalic acid metabolism, microbial fermentation synthesis, and application research in the medical field. Finally, prospect for further research was addressed.
Fermentation
;
Industrial Microbiology
;
Malates
;
chemistry
;
Polymers
;
chemistry
6.Simulation of industrial fermentation: current status and future perspectives.
Demao LI ; Wuxi CHEN ; Wei GUO ; Chaofeng LI
Chinese Journal of Biotechnology 2019;35(10):1974-1985
Industrial fermentation is the basic operation unit of industrial biotechnology in large-scale production. Mathematical simulation of microbial cells and their reactors will help deepen the understanding of microorganisms and fermentation processes, and will also provide solutions for the construction of new synthetic organisms. In this paper, the characteristics of industrial fermentation system, the development of mathematical simulation, the classification, characteristics and functions of mathematical models are described in depth, and the development trend of whole fermentation system simulation is prospected.
Biotechnology
;
Fermentation
;
Industrial Microbiology
;
Models, Biological
7.Advance in dihydroxyacetone production by microbial fermentation.
Xiaojing XU ; Xun CHEN ; Mingfen JIN ; Xiaowei WU ; Xianghe WANG
Chinese Journal of Biotechnology 2009;25(6):903-908
We reviewed the fermentation for dihydroxyacetone production. Microbial fermentation is better for dihydroxyacetone production as compared to chemical methods. Gluconobacter oxydans was recognized as the most important strain for industrial production of dihydroxyacetone. The dihydroxyacetone yield is associated with many factors such as substrate, product, oxygen and biomass concentration. Repeated fed-batch fermentation and immobilization fermentation were recognized as the most potential process in various fermentation mode. Construction of recombinant microorganism and optimization of process are future directions of dihydroxyacetone production.
Dihydroxyacetone
;
biosynthesis
;
Fermentation
;
Gluconobacter oxydans
;
metabolism
;
Industrial Microbiology
8.Synthetic biology for metabolic engineering--a review.
Chinese Journal of Biotechnology 2009;25(9):1296-1302
In the last few decades, with the development of recombinant DNA technology, metabolic engineering has made tremendous advances. Synthetic biology is a newly and rapidly emerging discipline. It has great potential in assisting and simplifying the study of metabolic engineering. This review focuses on the recent development of synthetic biology and its application in optimizing metabolic pathway and engineering cellular chassis.
Genetic Engineering
;
methods
;
Industrial Microbiology
;
methods
;
Metabolism
;
Synthetic Biology
;
trends
9.Metabolic engineering: an evolving technology for strain improvement.
Chinese Journal of Biotechnology 2009;25(9):1281-1284
The background for developing metabolic engineering was reviewed, followed by a discussion on analyzing the driving force for developing metabolic engineering. Twelve papers published in this special section were briefly introduced with the aim to stimulate further developments in this fast evolving field.
Biotechnology
;
trends
;
Genetic Engineering
;
methods
;
Industrial Microbiology
;
methods
;
Metabolism
10.Application of bioinformatics in researches of industrial biocatalysis.
Hui-Min YU ; Hui LUO ; Yue SHI ; Xu-Dong SUN ; Zhong-Yao SHEN
Chinese Journal of Biotechnology 2004;20(3):325-331
Industrial biocatalysis is currently attracting much attention to rebuild or substitute traditional producing process of chemicals and drugs. One of key focuses in industrial biocatalysis is biocatalyst, which is usually one kind of microbial enzyme. In the recent, new technologies of bioinformatics have played and will continue to play more and more significant roles in researches of industrial biocatalysis in response to the waves of genomic revolution. One of the key applications of bioinformatics in biocatalysis is the discovery and identification of the new biocatalyst through advanced DNA and protein sequence search, comparison and analyses in Internet database using different algorithm and software. The unknown genes of microbial enzymes can also be simply harvested by primer design on the basis of bioinformatics analyses. The other key applications of bioinformatics in biocatalysis are the modification and improvement of existing industrial biocatalyst. In this aspect, bioinformatics is of great importance in both rational design and directed evolution of microbial enzymes. Based on the successful prediction of tertiary structures of enzymes using the tool of bioinformatics, the undermentioned experiments, i.e. site-directed mutagenesis, fusion protein construction, DNA family shuffling and saturation mutagenesis, etc, are usually of very high efficiency. On all accounts, bioinformatics will be an essential tool for either biologist or biological engineer in the future researches of industrial biocatalysis, due to its significant function in guiding and quickening the step of discovery and/or improvement of novel biocatalysts.
Biocatalysis
;
Computational Biology
;
trends
;
Enzymes
;
chemistry
;
metabolism
;
Industrial Microbiology