1.Histopathological Analysis of High 18F-FDG Uptake in Meniscoid Ulcer of Colon Carcinoma: Report of A Case.
Nuclear Medicine and Molecular Imaging 2008;42(2):181-183
No abstract available.
Colon
;
Fluorodeoxyglucose F18
;
Ulcer
2.Motion Correction in PET/CT Images.
Sang Keun WOO ; Gi Jeong CHEON
Nuclear Medicine and Molecular Imaging 2008;42(2):172-180
PET/CT fused image with anatomical and functional information have improved medical diagnosis and interpretation. This fusion has resulted in more precise localization and characterization of sites of radio-tracer uptake. However, a motion during whole-body imaging has been recognized as a source of image quality degradation and reduced the quantitative accuracy of PET/CT study. The respiratory motion problem is more challenging in combined PET/CT imaging. In combined PET/CT, CT is used to localize tumors and to correct for attenuation in the PET images. An accurate spatial registration of PET and CT image sets is a prerequisite for accurate diagnosis and SUV measurement. Correcting for the spatial mismatch caused by motion represents a particular challenge for the requisite registration accuracy as a result of differences in PET/CT image. This paper provides a brief summary of the materials and methods involved in multiple investigations of the correction for respiratory motion in PET/CT imaging, with the goal of improving image quality and quantitative accuracy.
Positron-Emission Tomography and Computed Tomography
3.Medical Application of Radiation Internal Dosimetry.
Nuclear Medicine and Molecular Imaging 2008;42(2):164-171
Medical internal radiation dosimetry (MIRD) is an important part of nuclear medicine research field using therapeutic radioisotope. There have been many researches using MIRD for the development of new therapeutic approaches including radiopharmaceutical, clinical protocol, and imaging techniques. Recently, radionuclide therapy has been re-focused as new solution of intractable diseases, through to the advances of previous achievements. In this article, the basic concepts of radiation and internal radiation dosimetry are summarized to help understanding MIRD and its application to clinical application.
Achievement
;
Clinical Protocols
;
Nuclear Medicine
;
Radiometry
4.Multimodality and Application Software.
Nuclear Medicine and Molecular Imaging 2008;42(2):153-163
Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multimodality instrumentations for clinical use from conception to present-day technology and the application software.
Accounting
;
Complement System Proteins
;
Dyskinesias
;
Fertilization
;
Humans
;
Magnetic Resonance Spectroscopy
;
Patient Positioning
;
Positron-Emission Tomography
;
Tomography, Emission-Computed, Single-Photon
5.Quantitation of In-Vivo Physiological Function using Nuclear Medicine Imaging and Tracer Kinetic Analysis Methods.
Su Jin KIM ; Kyeong Min KIM ; Jae Sung LEE
Nuclear Medicine and Molecular Imaging 2008;42(2):145-152
Nuclear medicine imaging has an unique advantage of absolute quantitation of radioactivity concentration in body. Tracer kinetic analysis has been known as an useful investigation methods in quantitative study of in-vivo physiological function. The use of nuclear medicine imaging and kinetic analysis together can provide more useful and powerful intuition in understanding biochemical and molecular phenomena in body. There have been many development and improvement in kinetic analysis methodologies, but the conventional basic concept of kinetic analysis is still essential and required for further advanced study using new radiopharmaceuticals and hybrid molecular imaging techniques. In this paper, the basic theory of kinetic analysis and imaging techniques for suppressing noise were summarized.
Chimera
;
Imidazoles
;
Intuition
;
Molecular Imaging
;
Nitro Compounds
;
Noise
;
Nuclear Medicine
;
Radioactivity
;
Radiopharmaceuticals
;
Tomography, Emission-Computed, Single-Photon
6.Quality Assurance and Performance Evaluation of PET/CT.
Nuclear Medicine and Molecular Imaging 2008;42(2):137-144
Positron emission tomography-computed tomography (PET/CT) provides both functional and anatomical images of high quality non-invasively with better precision in localization than PET alone. Increase in the use of PET/CT, coupled with increasing concerns about the quality of medical services accrued the demands for accurate evaluation of system performance and quality assurance. Thus, well designed programs for performance evaluation and quality assurance are needed. Widely used protocols for performance evaluation of PET are the methods proposed by National Electrical Manufacturers Association (NEMA) in 1994 and 2001. In addition, in order to maintain high quality of PET/CT images, quality assurance programs including periodic (daily, monthly, and yearly). Therefore, in this article, the methods and present state of performance evaluation and quality assurance of PET/CT are reviewed.
7.Monte Carlo Simulation Codes for Nuclear Medicine Imaging.
Yong Hyun CHUNG ; Cheol Ha BEAK ; Seung Jae LEE
Nuclear Medicine and Molecular Imaging 2008;42(2):127-136
Monte Carlo simulation methods are especially useful in studying a variety of problems difficult to calculate by experimental or analytical approaches. Nowadays, they are extensively applied to simulate nuclear medicine instrumentations such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) for assisting system design and optimizing imaging and processing protocols. The goal of this paper is to address the practical issues, a potential user of Monte Carlo simulations for nuclear medicine can encounter, to help them to choose a code. This review introduces the different types of Monte Carlo codes currently available for nuclear medicine, comments main features and properties for a code to be proper for a given purpose, and discusses current research trends in Monte Carlo codes.
Nuclear Medicine
;
Positron-Emission Tomography
;
Tomography, Emission-Computed, Single-Photon
8.Statistical Methods for Tomographic Image Reconstruction in Nuclear Medicine.
Nuclear Medicine and Molecular Imaging 2008;42(2):118-126
Statistical image reconstruction methods have played an important role in emission computed tomography (ECT) since they accurately model the statistical noise associated with gamma-ray projection data. Although the use of statistical methods in clinical practice in early days was of a difficult problem due to high per-iteration costs and large numbers of iterations, with the development of fast algorithms and dramatically improved speed of computers, it is now inevitably becoming more practical. Some statistical methods are indeed commonly available from nuclear medicine equipment suppliers. In this paper, we first describe a mathematical background for statistical reconstruction methods, which includes assumptions underlying the Poisson statistical model, maximum likelihood and maximum a posteriori approaches, and prior models in the context of a Bayesian framework. We then review a recent progress in developing fast iterative algorithms.
Image Processing, Computer-Assisted
;
Models, Statistical
;
Noise
;
Nuclear Medicine
;
Tomography, Emission-Computed
9.Physical Artifact Correction in Nuclear Medicine Imaging: Normalization and Attenuation Correction.
Jin Su KIM ; Jae Sung LEE ; Gi Jeong CHEON
Nuclear Medicine and Molecular Imaging 2008;42(2):112-117
Artifact corrections including normalization and attenuation correction were important for quantitative analysis in Nuclear Medicine Imaging. Normalization is the process of ensuring that all lines of response joining detectors in coincidence have the same effective sensitivity. Failure to account for variations in LOR sensitivity leads to bias and high-frequency artifacts in the reconstructed images. Attenuation correction is the process of the correction of attenuation phenomenon lies in the natural property that photons emitted by the radiopharmaceutical will interact with tissue and other materials as they pass through the body. In this paper, we will review the several approaches for normalization and attenuation correction strategies.
Artifacts
;
Bias (Epidemiology)
;
Enzyme Multiplied Immunoassay Technique
;
Nuclear Medicine
;
Photons
10.Recent Advances in Nuclear Medicine Imaging Instrumentation.
Jin Ho JUNG ; Yong CHOI ; Key Jo HONG ; Byung Jun MIN ; Wei HU ; Ji Hoon KANG
Nuclear Medicine and Molecular Imaging 2008;42(2):98-111
This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical imagers will also be discussed.
Biological Processes
;
Chimera
;
Electronics
;
Electrons
;
Models, Animal
;
Molecular Imaging
;
Myocardial Perfusion Imaging
;
Nuclear Medicine
;
Positron-Emission Tomography
;
Positron-Emission Tomography and Computed Tomography
;
Signal-To-Noise Ratio
;
Tomography, Emission-Computed, Single-Photon