1.Evaluation of the Output Dose of a Linear Accelerator Photon Beams by Using the Ionization Chamber TM31010 Series through TG-51 Protocol to Postal Monitoring Output of RPC for 5 Years.
Korean Journal of Medical Physics 2011;22(2):92-98
This study is to keep the accuracy and stability of the output dose evaluations for linear accelerator photon beams by using the air ionization chambers (TM31010, 0.125 cc, PTW) through the Task Group 51 protocol. The absorbed dose to water calibration factor NdwCo-60 was delivered from the air kerma calibration factor Nk which was provided from manufacture through SSDL calibration for determination of output factor. The ionization chamber of TM31010 series was reviewed the calibration factor and other parameters for reduce the uncertainty within +/-2% discrepancy and we found the supplied NdwCo-60 which was derived from Nk has shown a -2.8% uncertainty compare to that of PSDL. The authors provided the program to perform the output dosimetry with TG-51 protocol as it is composed same screen of TG-51 worksheets. The evaluated dose by determination of output factor delivered to postal TLD block for comparison the output dose to that of MDACC (RPC) in postal monitoring program. The results have shown the 1.001+/-0.013 for 6 MV and 0.997+/-0.012 discrepancy for 15 MV X rays for 5 years followed. This study shows the evaluated outputs for linear accelerate photon beams are very close to that of international output monitor with small discrepancy of +/-1.3% with high reliability and showing the gradually stability after 2010.
Air Ionization
;
Calibration
;
Organothiophosphorus Compounds
;
Particle Accelerators
;
Phenylpropionates
;
Uncertainty
;
Water
2.Calculation of Energy Spectra for Electron Beam of Medical Linear Accelerator Using GEANT4.
Young Gull JOH ; Hyung Dong KIM ; Byung Young KIM ; Sung Jin KIM ; Se An OH ; Jeong Ku KANG ; Sung Kyu KIM
Korean Journal of Medical Physics 2011;22(2):85-91
The energy spectra for electron beam of medical linear accelerator were calculated using a GEANT4 Medical Linac 2 example code. The incident electron mean energy were 6, 9, 12, 16, 20 MeV. This code was designed to calculate electron beam energy spectra according to material, thickness and location of electron scattering foil affecting electron beam characteristic. Lead, Copper, Aluminum and Gold were used for scattering foil. The energy distribution for electron and photon were analyzed by changing position of scattering foil in the head of linear accelerator. The effect of electron scattering foil on energy spectra which is basic data of simulation for medical linear accelerator were presented. The calculated results would be used in design of medical accelerator head.
Aluminum
;
Copper
;
Electrons
;
Head
;
Particle Accelerators
3.Study on the 6 MV Photon Beam Characteristics and Analysis Method from Medical Linear Accelerators Using Geant4 Medical Linac2 Example.
Byung Yong KIM ; Hyung Dong KIM ; Sung Jin KIM ; Se An OH ; Jung Gu KANG ; Sung Kyu KIM
Korean Journal of Medical Physics 2011;22(2):79-84
In this study, Geant4 based Monte Carlo simulations were carried out for medical linear accelerator. Modified Medical Linac2 toolkit was used for calculation. The energy spectrum, most probable energy and the photon mean energy compared with the published results using the EGS4 code. The results well agreed with published results. The calculated results of photon fluence, energy fluence and mean energy according to the radius from the centre of the beam were analyzed. Monte Carlo simulation using Medical Linac2 code is considered to be useful for analysis of medical linear accelerator. Because the calculated results varies depending on Physics List model for same head structure. It it important to choose the right model for research purpose. Monte Carlo simulation using GEANT4 Medical Linac2 is a valuable for any novice to adopt this code to the study related to 6 MV photon fluence from medical linear accelerator.
Head
;
Particle Accelerators
;
Radius
4.Evaluation of Setup Errors for Tomotherapy Using Differently Applied Vacuum Compression with the Bodyfix Immobilization System.
Jae Hong JUNG ; Kwang Hwan CHO ; Jeong Woo LEE ; Min Joo KIM ; Kwang Chae LIM ; Seong Kwon MOON ; Yong Ho KIM ; Tae Suk SUH
Korean Journal of Medical Physics 2011;22(2):72-78
The aim of this study is to evaluate the patient's setup errors in TomoTherapy (Hi-Art II, TomoTherapy, USA) Bodyfix system (Medical Intelligence, Ele-kta, Schwabmuchen, Germany) pressure in the vacuum compression, depending on and were evaluated. Bodyfix immobilization system and vacuum pressure was compression applied to the patients who received Tomotherapy thoracic and abdominal area, 21 patients were selected and TomoTehpay treatment total 477 of MVCT images were obtained. The translational (medial-lateral: ML, anterior-posterior: AP, superior-inferior: SI directions) and rolling were recorded and analyzed statistically. Using Pearson's product-moment coefficient and One-way ANOVA, the degree of correlation depending on the different vacuum pressure levels were statistically analyzed for setup errors from five groups (p<0.05). The largest average and standard deviation of systematic errors were 6.00, 5.95 mm in the AP and SI directions, respectively. The largest average of random errors were 4.72 mm in the SI directions. The correlation coefficients were 0.485, 0.244, and 0.637 for the ML-Roll, AP-Vector, and SI-Vector, respectively. SI-Vector direction showed the best relationship. In the results of the different degree of vacuum pressure in five groups (Pressure range: 30~70 mbar), the setup errors between the ML, SI in both directions and Roll p=0.00 (p<0.05) were shown significant differences. The average errors of SI direction in the vacuum pressure of 40 mbar and 70 mbar group were 4.78 mm and -0.74 mm, respectively. In this study, the correlation between the vacuum pressure and the setup-errors were statistically analyzed. The fact that setup-errors in SI direction is dependent in vacuum pressure considerly setup-errors and movement of interal organs was identified. Finally, setup-errors, and it, based on the movement of internal organs in Bodyfix system we should apply more than 50 mbar vacuum pressure. Based on the results of this study, it is suggested that accuracy of the vacuum pressure and the quantitative analysis of movement of internal organs and the tumor should be studied.
Analysis of Variance
;
Humans
;
Immobilization
;
Intelligence
;
Vacuum
5.Analysis of Overall Setup Accuracy Using On-Board Imager(R).
Sun Young MA ; Sangwook LIM ; Sooman KANG ; Tae Sig JEUNG
Korean Journal of Medical Physics 2011;22(2):67-71
We evaluated the overall setup accuracy for the On-Board Imager (OBI, Varian Medical Systems Inc., Palo Alto, CA, USA), with attention to the laser, the gantry, and operator performance. We let experienced technicians place the marker block on the couch using a lock bar system, with alignment to the isocenter of the laser, every morning. A pair of radiographic images of the marker block was acquired at 0degrees and 270degrees angles to the kV arm to correct the position using a 2D/2D matching technique. Once the desired match was achieved, the couch was moved remotely to correct the setup error and the parameters were saved. The average for the vertical and the longitudinal displacements were 0.65 mm and 0.66 mm, and 0.01 mm for the lateral displacement. The average for the vertical and longitudinal displacements were statistically significant at the 0.05 level (p value=0.000 for both), while the p value for the lateral direction was 0.829. These results show that the tendencies to displacement in vertical and longitudinal directions occur through systematic error, while systematic error was not found in the lateral displacement. This daily overall evaluation is practical and easy to find the systematic and random errors in the setup system; however, a daily QA for laser and OBI alignment is still needed to minimize the systematic error in aligning patients.
Arm
;
Displacement (Psychology)
;
Humans
;
Hypogonadism
;
Linear Energy Transfer
;
Mitochondrial Diseases
;
Ophthalmoplegia
6.Efficiency Study of 2D Diode Array Detector for IMRT Quality Assurance.
Tae Ho KIM ; Seungjong OH ; Min Joo KIM ; Won Gyun JUNG ; Jin Beom CHUNG ; Jae Sung KIM ; Siyong KIM ; Tae Suk SUH
Korean Journal of Medical Physics 2011;22(2):61-66
In this study, we evaluated the effect of grid size on dose calculation accuracy using 2 head & neck and 2 prostate IMRT cases and based on this study's findings, we also evaluated the efficiency of a 2D diode array detector for IMRT quality assurance. Dose distributions of four IMRT plan data were calculated at four calculation grid sizes (1.25, 2.5, 5, and 10 mm) and the calculated dose distributions were compared with measured dose distributions using 2D diode array detector. Although there was no obvious difference in pass rate of gamma analysis with 3 mm/3% acceptance criteria for the others except 10 mm grid size, we found that the pass rates of 2.5, 5 and 10 mm grid size were decreased 5%, 20% and 31.53% respectively according to the application of the fine acceptance criteria, 3 mm/3%, 2 mm/2% and 1 mm/1%. The calculation time were about 11.5 min, 4.77 min, 2.95 min, and 11.5 min at 1.25, 2.5, 5, and 10 mm, respectively and as the grid size increased to double, the calculation time decreased about one-half. The grid size effect was observed more clearly in the high gradient area than the low gradient area. In conclusion, 2.5 mm grid size is considered acceptable for most IMRT plans but at least in the high gradient area, 1.25 mm grid size is required to accurately predict the dose distribution. These results are exactly same as the precious studies' results and theory. So we confirmed that 2D array diode detector was suitable for the IMRT QA.
Head
;
Neck
;
Prostate
7.Patient Safety and the Medical Physicist.
Korean Journal of Medical Physics 2011;22(2):59-60
No abstract available.
Humans
;
Patient Safety
8.Development of Lead Free Shielding Material for Diagnostic Radiation Beams.
Tae Jin CHOI ; Young Kee OH ; Jin Hee KIM ; Ok Bae KIM
Korean Journal of Medical Physics 2010;21(2):232-237
The shielding materials designed for replacement of lead equivalent materials for lighter apron than that of lead in diagnostic photon beams. The absorption characteristics of elements were applied to investigate the lead free material for design the shielding materials through the 50 kVp to 110 kVp x-ray energy in interval of 20 kVp respectively. The idea focused to the effect of K-edge absorption of variable elements excluding the lead material for weight reduction. The designed shielding materials composited of Tin 34.1%, Antimon 33.8% and Iodine 26.8% and Polyisoprene 5.3% gram weight account for 84 percent of weight of lead equivalent of 0.5 mm thickness. The size of lead-free shielder was 200x200x1.5 mm3 and 3.2 g/cm3 of density which is equivalent to 0.42 mm of Pb. The lead equivalent of 0.5 mm thickness generally used for shielding apron of diagnostic X rays which is transmitted 0.1% for 50 kVp, 0.9% for 70 kVp and 3.2% for 90 kVp and 4.8% for 110 kVp in experimental measurements. The experiment of transmittance for lead-free shielder has showed 0.3% for 50 kVp, 0.6% for 70 kVp, 2.0% for 90 kVp and 4.2% for 110 kVp within 0.1%. respectively. Using the attenuation coefficient of experiments for 0.5 mm Pb equivalent of lead-free materials showed 0.1%. 0.3%, 1.0% and 2.4%, respectively. Furthermore, the transmittance of lead-free shielder for scatter rays has showed the 2.4% in operation energy of 50 kVp and 5.9% in energy of 110 kVp against 2.4% and 5.1% for standard lead thickness within 0.2% discrepancy, respectively. In this experiment shows the designed lead-free shielder is very effective for reduction the apron weight in diagnostic radiation fields.
Absorption
;
Iodine
;
Radiation Protection
;
Tin
;
Weight Loss
9.Analysis and Investigation for the Status of Radiation Therapy QA in Korea.
Sang Hoon LEE ; Juree KIM ; Sam Ju CHO ; Kwang Hwan CHO ; Chunil LIM ; Hyeog Ju KIM ; Hyundo HUH ; Dong Oh SHIN ; Sooil KWON ; Jinho CHOI
Korean Journal of Medical Physics 2010;21(2):223-231
We have taken surveys about total 72 departments of radiation oncology which is performing the treatment with linear accelerator and brachytherapy unit in Korea. The survey was included the research about the linear accelerator, brachytherapy, Also, we surveyed the various performance (QA period, manpower, time) of quality control for understanding of efficiency. The survey results show that the QA test of daily and weekly are almost same comparing to USA and Europe but the QA performance of monthly and yearly in Korea are 15.5 which is less than USA and Europe recommended QA item number of 17 to 21. The manpower and QA time in Korea also lower than 50% of USA and Europe recommended because the manpower and QA time limitation in Korea. It will be expected that the manual of quality management in each clinic could be appropriately established when combining the present results with previously published AAPM TG-40 and other protocols.
Brachytherapy
;
Europe
;
Korea
;
Particle Accelerators
;
Quality Control
;
Radiation Oncology
10.Property of Dose Distribution in Accordance with Dose Rate Variation in Intensity Modulated Radiation Therapy.
Min Kyu KANG ; Sung Joon KIM ; Hyun Soo SHIN ; Sung Kyu KIM
Korean Journal of Medical Physics 2010;21(2):218-222
As radiation is irradiated from various directions in intensity modulated radiation therapy (IMRT), longer treatment time than conventional treatment method is taken. In case of the patients who have problem to keep same posture for long time because of pain and injury, reducing treatment time through increased dose rate is a way for effective treatment. This study measured and found out the variation of dose and dose distribution in accordance with dose rate variation. IMRT treatment plan was set up to investigate from 5 directions - 0degrees, 72degrees, 144degrees, 216degrees, 288degrees - using ECLIPSE system (Varian, SomaVision 6.5, USA). To confirm dose and dose rate in accordance with dose rate variation, dose rate was set up as 100, 300, 500 MU/min, and dose and dose distribution were measured using ionization chamber (PTW, TN31014) and film dosimeter (EDR2, Kodak). At this time, film dosimeter was inserted into acrylic phantom, then installed to run parallel with beam's irradiating direction, 21EX-S (Varian, USA) was utilized as linear accelerator for irradiation. The measured film dosimeter was analyzed using VXR-16 (Vidar System Corporation) to confirm dose distribution.
Humans
;
Particle Accelerators
;
Posture