1.Effect of Danggui Buxuetang on PINK1/Parkin Signaling Pathway of Vascular Dementia Rats
Guifang QI ; Yue JIANG ; Yunxiang TAN ; Nanbu WANG ; Xinghua CHEN ; Ting WAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):15-24
ObjectiveTo investigate the potential mechanism of Danggui Buxuetang (DBT) in the treatment of vascular dementia (VAD). MethodsSixty male SD rats were randomly assigned to the sham-operated group, model group, DBT low-, medium-, and high-dose groups, and the donepezil group. Except for the sham-operated group, rats in all other groups underwent bilateral common carotid artery ligation. After successful modeling, DBT was administered at doses of 9.2, 18.4, 36.8 g·kg-1 for the low-, medium-, and high-dose groups, respectively, while the donepezil group received 3 mg·kg-1 donepezil solution by gavage once daily. After 4 consecutive weeks of drug treatment, rats underwent the Morris water maze test, novel object recognition test, Nissl staining to observe hippocampal neurons, and immunofluorescence staining to detect the expression of neuronal nuclear protein (NeuN) in the hippocampus. Western blot was used to assess the expression of PTEN-induced kinase 1 (PINK1), Parkin, microtubule-associated protein 1 light chain 3Ⅱ (LC3Ⅱ), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax). Transmission electron microscopy was used to observe hippocampal neuronal ultrastructure. Real-time PCR was used to detect the expression of NADPH oxidase subunits p22phox and p47phox in hippocampal tissues. The levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity were measured to evaluate oxidative stress levels. ResultsIn the Morris water maze test, escape latency changed significantly over time in all groups except the model group. Compared with the sham-operated group, the model group showed significantly prolonged escape latency (P<0.01). Compared with the model group, rats in the DBT groups and the donepezil group exhibited significantly shorter escape latency (P<0.05, P<0.01). The number of crossings over the original platform was significantly reduced in the model group compared with the sham-operated group (P<0.01), whereas rats in the DBT and donepezil groups showed significantly increased platform crossings compared with the model group (P<0.05, P<0.01). Compared with the sham-operated group, exploration time of new objects was significantly reduced in the model group (P<0.01). Compared with the model group, exploration time of new objects increased significantly in the medium- and high-dose DBT groups and the donepezil group (P<0.05, P<0.01), while no significant change was observed in the low-dose DBT group. Compared with the high-dose DBT group, rats in the donepezil group had significantly prolonged escape latency and reduced platform crossings and new-object exploration time (P<0.05). Nissl staining showed decreased density of healthy neurons in the CA1 and CA3 regions of the hippocampus in the model group, with loss of Nissl bodies and nuclear atrophy or disappearance. In the high-dose DBT group, neuronal density in CA1 and CA3 increased, with neurons arranged closely and displaying normal morphology. Immunofluorescence showed that compared with the sham-operated group, the hippocampal NeuN⁺ cell count in the VAD model group was significantly decreased(P<0.01), compared with the VAD model group, the hippocampal NeuN⁺ cell count in the high-dose DBT group was significantly increased(P<0.01). Compared with the sham-operated group, the expression of PINK1, Parkin, LC3Ⅱ, and Bax proteins was significantly increased(P<0.01), while the expression of Bcl-2 was significantly decreased in the VAD model group(P<0.01). Compared with the VAD model group, the high-dose DBT group showed significantly decreased expression of PINK1, Parkin, LC3Ⅱ, and Bax proteins(P<0.01)and significantly upregulated Bcl-2 expression(P<0.01). The medium-dose DBT group exhibited significantly reduced expression of Parkin, LC3Ⅱ, and Bax proteins(P<0.05,P<0.01) and significantly increased Bcl-2 expression(P<0.01), while no statistically significant differences were observed in the low-dose DBT group. Transmission electron microscopy showed mitochondrial pyknosis, thickened cristae, increased electron density, and the presence of mitochondrial autophagy in the model group. In contrast, hippocampal neurons in the high-dose DBT group contained abundant mitochondria with intact morphology, clear cristae, and uniform matrix. Compared with the sham-operated group, total antioxidant capacity, SOD activity, and GSH levels were significantly decreased, while MDA levels were significantly increased in the model group (P<0.01). Compared with the model group, total antioxidant capacity and antioxidant levels (SOD, GSH) increased significantly, and MDA decreased significantly in the medium- and high-dose DBT groups (P<0.01), while no significant changes were observed in the low-dose DBT group. Compared with the sham-operated group, mRNA expression of p22phox and p47phox was significantly increased in the model group (P<0.01). Compared with the model group, expression of p22phox and p47phox was significantly decreased in the DBT groups (P<0.05, P<0.01). ConclusionDBT may exert neuroprotective effects by regulating PINK1/Parkin-mediated mitochondrial autophagy, thereby improving learning and memory abilities and treating VAD.
2.Mechanisms of Sini San in Regulation of Gut Microbiota Against Depression and Liver Injury in CUMS Rats
Junling LI ; Yan ZHANG ; Lei WANG ; Fang QI ; Zhenzhen CHEN ; Tianxing CHEN ; Yuhang LIU ; Xueying WANG ; Xianwen TANG ; Yubo LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):33-40
ObjectiveTo explore the efficacy and mechanisms of Sini San in the treatment of depression and liver injury based on gut microbiota. MethodsThirty-two male Sprague-Dawley (SD) rats were randomly divided into a normal group, model group (M), Sini San group (MS, 2.5 g·kg-1), and fluoxetine group (MF, 2 mg·kg-1). Except for the normal group, rats in the other three groups were subjected to chronic unpredictable mild stress (CUMS). After 8 weeks, the open-field test and sucrose preference test were conducted. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum corticosterone (CORT), adrenocorticotropic hormone (ACTH), corticotropin-releasing factor (CRF), lipopolysaccharide (LPS), Zonulin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), γ-aminobutyric acid (GABA) levels in the hippocampus and prefrontal cortex, and brain-derived neurotrophic factor (BDNF) levels in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect hippocampal BDNF mRNA expression. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured using the ultraviolet lactate dehydrogenase method. The ultrastructure of the intestinal epithelium was observed by electron microscopy, and gut microbiota in rat feces were analyzed using 16S rDNA high-throughput sequencing. ResultsCompared with the normal group, the sucrose preference of rats in the model group was significantly reduced (P0.01), whereas it was significantly increased in the Sini San group compared with the model group (P0.05). Compared with the normal group, hippocampal GABA protein levels and BDNF mRNA expression in the model group were significantly decreased (P0.05), and compared with the model group, both were significantly increased in the Sini San group (P0.05, P0.01). Compared with the normal group, serum LPS and Zonulin levels in the model group were significantly increased (P0.05, P0.01), and compared with the model group, Zonulin levels in the Sini San group were significantly decreased (P0.05). No obvious changes were observed in the ultrastructure of the jejunal mucosa among groups. Compared with the normal group, widened and blurred tight junctions, sparse and shortened microvilli, and mitochondrial swelling with cristae disruption in epithelial cells were observed in the ileal and colonic mucosa of the model group, which were markedly improved in the Sini San and fluoxetine groups. The results of 16S rDNA high-throughput sequencing showed that Sini San improved CUMS-induced dysbiosis of Bacteroidetes and Proteobacteria. Correlation analysis indicated that Bacteroidetes and Proteobacteria were significantly correlated with depression-related indicators, liver function, and intestinal mucosal permeability. ConclusionSini San exerts antidepressant and hepatoprotective effects by improving Bacteroidetes and Proteobacteria and inhibiting the increase in intestinal mucosal permeability in CUMS rats.
3.Analysis of Animal Models of Retinitis Pigmentosa Based on Diagnostic Features of Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Jiefeng CHEN ; Xiaoxiao ZHU ; Yina QI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):198-203
Retinitis pigmentosa (RP) is the most common hereditary blinding eye disease in clinical practice, with the pathogenesis remaining unclear. Patients experience progressive apoptosis of retinal photoreceptor cells, accompanied by degeneration of retinal pigment epithelium (RPE) cells. Current Western medical treatments mainly focus on gene therapy and stem cell transplantation, showing limited efficacy. In contrast, clinical observations have confirmed the therapeutic effects of traditional Chinese medicine (TCM) treatments. Establishing an RP animal model that aligns with the diagnostic features of both TCM and Western medicine could help combine the strengths of both approaches, thereby broadening the treatment options for RP. This study categorizes and summarizes the existing RP animal models in terms of classification, types, inheritance patterns, and alignment with clinical manifestations. It is found that current RP models are primarily derived from natural animal models such as RD mice and RCS rats, transgenic animal models like RPE-65 knockout mice and rhodopsin gene knockout mice, and chemically induced models such as those created by monochromatic light exposure or N-ethyl-N-nitrosourea (ENU) administration. These three categories of models focus more on detecting RP-related histopathological, molecular biological, and cellular immunological indicators, but offer limited observation of the overall characteristics of the disease and lack insight into syndrome differentiation. Although RP is a congenital genetic disease, its progression is influenced by acquired factors such as environment, constitution, emotions, and care. Current models do not fully capture the characteristics of this disease. Therefore, establishing an RP animal model based on the diagnostic features of both TCM and Western medicine will have significant implications for future experimental and clinical research.
4.Mechanisms of Sini San in Regulation of Gut Microbiota Against Depression and Liver Injury in CUMS Rats
Junling LI ; Yan ZHANG ; Lei WANG ; Fang QI ; Zhenzhen CHEN ; Tianxing CHEN ; Yuhang LIU ; Xueying WANG ; Xianwen TANG ; Yubo LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):33-40
ObjectiveTo explore the efficacy and mechanisms of Sini San in the treatment of depression and liver injury based on gut microbiota. MethodsThirty-two male Sprague-Dawley (SD) rats were randomly divided into a normal group, model group (M), Sini San group (MS, 2.5 g·kg-1), and fluoxetine group (MF, 2 mg·kg-1). Except for the normal group, rats in the other three groups were subjected to chronic unpredictable mild stress (CUMS). After 8 weeks, the open-field test and sucrose preference test were conducted. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum corticosterone (CORT), adrenocorticotropic hormone (ACTH), corticotropin-releasing factor (CRF), lipopolysaccharide (LPS), Zonulin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), γ-aminobutyric acid (GABA) levels in the hippocampus and prefrontal cortex, and brain-derived neurotrophic factor (BDNF) levels in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect hippocampal BDNF mRNA expression. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured using the ultraviolet lactate dehydrogenase method. The ultrastructure of the intestinal epithelium was observed by electron microscopy, and gut microbiota in rat feces were analyzed using 16S rDNA high-throughput sequencing. ResultsCompared with the normal group, the sucrose preference of rats in the model group was significantly reduced (P<0.01), whereas it was significantly increased in the Sini San group compared with the model group (P<0.05). Compared with the normal group, hippocampal GABA protein levels and BDNF mRNA expression in the model group were significantly decreased (P<0.05), and compared with the model group, both were significantly increased in the Sini San group (P<0.05, P<0.01). Compared with the normal group, serum LPS and Zonulin levels in the model group were significantly increased (P<0.05, P<0.01), and compared with the model group, Zonulin levels in the Sini San group were significantly decreased (P<0.05). No obvious changes were observed in the ultrastructure of the jejunal mucosa among groups. Compared with the normal group, widened and blurred tight junctions, sparse and shortened microvilli, and mitochondrial swelling with cristae disruption in epithelial cells were observed in the ileal and colonic mucosa of the model group, which were markedly improved in the Sini San and fluoxetine groups. The results of 16S rDNA high-throughput sequencing showed that Sini San improved CUMS-induced dysbiosis of Bacteroidetes and Proteobacteria. Correlation analysis indicated that Bacteroidetes and Proteobacteria were significantly correlated with depression-related indicators, liver function, and intestinal mucosal permeability. ConclusionSini San exerts antidepressant and hepatoprotective effects by improving Bacteroidetes and Proteobacteria and inhibiting the increase in intestinal mucosal permeability in CUMS rats.
5.Analysis of Animal Models of Retinitis Pigmentosa Based on Diagnostic Features of Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Jiefeng CHEN ; Xiaoxiao ZHU ; Yina QI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):198-203
Retinitis pigmentosa (RP) is the most common hereditary blinding eye disease in clinical practice, with the pathogenesis remaining unclear. Patients experience progressive apoptosis of retinal photoreceptor cells, accompanied by degeneration of retinal pigment epithelium (RPE) cells. Current Western medical treatments mainly focus on gene therapy and stem cell transplantation, showing limited efficacy. In contrast, clinical observations have confirmed the therapeutic effects of traditional Chinese medicine (TCM) treatments. Establishing an RP animal model that aligns with the diagnostic features of both TCM and Western medicine could help combine the strengths of both approaches, thereby broadening the treatment options for RP. This study categorizes and summarizes the existing RP animal models in terms of classification, types, inheritance patterns, and alignment with clinical manifestations. It is found that current RP models are primarily derived from natural animal models such as RD mice and RCS rats, transgenic animal models like RPE-65 knockout mice and rhodopsin gene knockout mice, and chemically induced models such as those created by monochromatic light exposure or N-ethyl-N-nitrosourea (ENU) administration. These three categories of models focus more on detecting RP-related histopathological, molecular biological, and cellular immunological indicators, but offer limited observation of the overall characteristics of the disease and lack insight into syndrome differentiation. Although RP is a congenital genetic disease, its progression is influenced by acquired factors such as environment, constitution, emotions, and care. Current models do not fully capture the characteristics of this disease. Therefore, establishing an RP animal model based on the diagnostic features of both TCM and Western medicine will have significant implications for future experimental and clinical research.
6.Effect of Bushen Huoxue Granules (补肾活血颗粒) on the Nrf2/NLRP3 Inflammasome Axis in the Brain Substantia Nigra of Parkinson's Disease Model Mice
Qi CHEN ; Peng WANG ; Yingfan CHEN ; Shaodan LI ; Minghui YANG
Journal of Traditional Chinese Medicine 2025;66(4):390-398
ObjectiveTo explore the possible mechanism of action of Bushen Huoxue Granules (补肾活血颗粒, BHG) in the treatment of Parkinson's disease (PD) through the Nrf2/NLRP3 inflammasome axis. MethodsA total of 84 male C57/BL 6 mice were randomly divided into blank group, model group, Madopar group, dimethyl fumarate group, and low-, medium, and high-dose BHG group, with 12 mice in each group. Except for the blank group, all groups were induced into PD models by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at a concentration of 30 mg/ml for 7 consecutive days. The blank group received an equal volume of saline. After model establishment, the low-, medium, and high-dose BHG groups were treated with 1.5, 3, and 6 g/(kg·d) of the BHG by gavage, respectively. The Madopar group was given 0.113 g/(kg·d) of Madopar tablets by gavage, and the dimethyl fumarate group was given 50 mg/(kg·d) of dimethyl fumarate solution. The blank group and the model group were given 10 ml/(kg·d) of distilled water by gavage. Gavage was administered once daily for 14 days. Behavioral changes were evaluated using the open field test (total distance, central area distance, and average speed), rotarod test (time on the rod), and climbing pole test (climbing time). Serum levels of interleukin-1β (IL-1β), interleukin-18 (IL-18), and myeloperoxidase (MPO) were measured by ELISA. Immunohistochemistry was used to detect tyrosine hydroxylase (TH) expression in the brain substantia nigra. Immunofluorescence was used to detect α-synuclein (α-syn) expression. Western Blot was used to detect Nrf2, NLRP3, Caspase-1, and α-syn protein levels in the brain substantia nigra. RT-PCR was used to detect mRNA expression levels of Nrf2, NLRP3, and Caspase-1 in the brain substantia nigra. ResultsCompared with the blank group, the model group showed decreased total distance, central area distance, and average speed, reduced time on the rotarod, prolonged climbing time, reduced TH expression, increased α-syn expression, decreased Nrf2 protein and mRNA expression, increased NLRP3 and Caspase-1 protein and mRNA expression, and elevated serum IL-1β, IL-18, and MPO levels (P<0.05). Compared with the model group, all drug interventions significantly improved the above indicators (P<0.05). There was no significant differences in all indicators between the high-dose BHG group and the Madopar group (P>0.05). Compared with the dimethyl fumarate group, the medium and high-dose BHG groups showed increased Nrf2 mRNA expression in the brain substantia nigra (P<0.05). Compared with the high-dose BHG group, the low-dose group showed decreased total distance, central area distance, and average speed, reduced serum IL-18 levels, decreased α-syn, Nrf2, NLRP3, and Caspase-1 protein levels, and lower Nrf2 mRNA expression (P<0.05). ConclusionThe mechanism by which BHG treat PD may involve activating the Nrf2/NLRP3 inflammasome axis in the brain substantia nigra, thereby reducing neuroinflammation and α-syn aggregation. The high-dose group showed the best effects.
7.Changes in soft and hard tissue of central incisor before and after distal migration of the maxillary dentition in adult patients with different periodontal phenotypes
CHEN Rui ; HAN Shuang ; AN Qi
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):41-49
Objective :
To explore the changes of periodontal soft and hard tissue parameters of the maxillary central incisors after the distant migration of the maxillary total dentition in adult patients with different periodontal phenotypes, so as to provide a reference for orthodontic treatment.
Methods:
The study was approved by the hospital ethics committee, and the patients signed the informed consent form. Fifty-two adult patients in the orthodontic department of Hefei Stomatological Hospital were selected and divided into thick gingival and thin gingival groups, with 26 cases in each group. The labial and palatal alveolar bone parameters and various periodontal indexes of the maxillary central incisor teeth of the two groups were collected and recorded before and after treatment. SPSS 26.0 statistical software was used to statistically analyze the intra-group and inter-group differences.
Results:
After orthodontic treatment, the differences in sella-nasion-subspinale angle (SNA), sella-nasion-supramental angle (SNB), and subspinale-nasion-supramental angle (ANB) were not statistically significant (P > 0.05). However, the inclination of the upper middle incisor teeth (U1-NA) decreased significantly (P < 0.05), and there was no significant difference in SNA, SNB, ANB, and U1-NA between the two groups after treatment (P > 0.05). The thickness of the labial alveolar bone of the maxillary central incisors in both groups increased at the labial neck 1/3 and labial middle 1/3 (P < 0.05), and decreased at the apical 1/3 (P < 0.05). The thickness of the palatal alveolar bone decreased at the labial neck 1/3 and labial middle 1/3 (P < 0.01), and increased at the apical 1/3 (P < 0.01). In both groups, the height of the lip and palate of the upper jaw decreased to different degrees, and the height of the palatal alveolar bone was lower in the thin gingival group (P < 0.05). There were no significant differences in maxillary central incisor probing depth (PD), lip keratinized tissue width (KTW), or lip gingival recession (GR) between the two groups after treatment (P > 0.05).
Conclusion
In the process of maxillary central incisor adduction, the labial-palatine alveolar bone remodeling is not uniform, and the alveolar bone of palatine side is mainly absorbed, which should be paid attention to clinically. Palatal alveolar bone height decreased more significantly in patients with thin gingiva after orthodontic treatment, and the risk of bone fenestration and bone dehiscence was greater.
8.Policies, standards and technological models of digital rehabilitation aligned with the framework of WHO's global digital health strategy
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Qi JING ; Yaoguang ZHANG
Chinese Journal of Rehabilitation Theory and Practice 2025;31(2):125-135
ObjectiveTo systematically analyze the global policy framework, standard systems and application technology models of digital rehabilitation within the framework of the World Health Organization (WHO) Global Digital Health Strategy and propose policy recommendations for the future development of digital rehabilitation. MethodsBased on the policies on digital health and rehabilitation development issued by the WHO, focusing on the Global Digital Health Strategy, Rehabilitation 2030 Initiative, Rehabilitation in Health Systems, Rehabilitation in Health Systems: A Guide for Action, and World Report on Disability, a systematic review was conducted, to explore the policy architecture and core content of digital rehabilitation, the standard system for digitalizing rehabilitation, and key technological models for the development of digital rehabilitation. ResultsIn the context of global health and digital transformation, the development of digital rehabilitation services was an essential component of the global digital health strategy. Building a comprehensive policy framework and content system for digital rehabilitation was critical for strengthening rehabilitation data governance, enhancing data utilization efficiency, and ensuring data privacy and security. Empowering rehabilitation with digital technology was vital for improving the standardization, effectiveness, coverage, quality and safety of rehabilitation services. International digital rehabilitation policies primarily involved the following areas: policy and governance, digital standard systems, data privacy, security and ethics, digital talent cultivation and capacity building, and monitoring, evaluation and continuous improvement of digitally empowered rehabilitation services. The standard system for rehabilitation digitization covered the three major reference classifications of the WHO Family of International Classifications, including International Classification of Diseases Eleventh Revision (ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI), especially ICF. It also included international data interoperability standards, data security and privacy protection standards, data quality and certification standards, and health information standards, etc. The application technology models of digital rehabilitation primarily included data-driven service models, artificial intelligence -enabled models, and remote rehabilitation models combined with virtual reality, augmented reality technologies, and Internet of Things support. ConclusionThe establishment and implementation of comprehensive policies, standards and technological models for digital rehabilitation are crucial for driving the digital transformation and development of global rehabilitation services. Under the framework of the WHO Global Digital Health Strategy, it is necessary to build adaptive digital rehabilitation policy frameworks, and enhance digital governance capabilities and levels, establishing and improving digital rehabilitation standard systems, and promoting the interoperability and integration of rehabilitation data with other health big data. Meanwhile, it is essential to actively develop data-driven technological models for rehabilitation services to comprehensively improve the accessibility, availability, quality and safety of rehabilitation services.
9.Effects of serum containing Sanchong tongluo sanjie formula on the proliferation and apoptosis of Lewis lung cancer cells and its mechanism
Yang LI ; Lei CHEN ; Qiachun ZHANG ; Jing ZHANG ; Jingyu FENG ; Qi LIANG
China Pharmacy 2025;36(4):440-446
OBJECTIVE To study the effects of Sanchong tongluo sanjie formula on the proliferation and apoptosis of Lewis lung cancer cells. METHODS The rats were given Sanchong tongluo sanjie formula powder [0.946 g/(kg·d)], Sanchong tongluo sanjie formula decoction [2.730 g/(kg·d)], and normal saline intragastrically, and injected with Cisplatin injection (4.2 mg/kg) intra-peritoneally to prepare powder-containing serum, decoction-containing serum, positive control serum and negative control serum. Lewis lung cancer cells were divided into negative control serum group, positive control serum group, and 5%, 10%, 20% drug-containing serum groups. The cell proliferation inhibition rates at 24, 48, and 72 hours post- intervention were measured to screen the optimal intervention concentrations of powder-containing serum and decoction-containing serum. The cell invasion ability, metastasis ability and apoptotic rate were detected in the negative control serum group, positive control serum group, 20% powder-containing serum group, and 20% decoction-containing serum group. Protein expressions of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), prolyl hydroxylase-2 (PHD2), matrix metalloproteinase-2 (MMP-2), extracellular regulated protein kinases (ERK),c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) were detected. RESULTS The cell proliferation inhibition rates for both the 20% powder-containing serum group and the 20% decoction-containing serum group, when intervened for 48 hours, were not less than 50%. Compared with negative control serum group, the number of invasive Lewis lung cancer cells and migration distance were decreased significantly, while the apoptotic rate was increased significantly (P<0.05); the apoptotic rate in the 20% powder- containing serum group was significantly higher than 20% decoction-containing serum group (P<0.05). The protein expressions of PHD2 and p38 MAPK were increased significantly in the 20% powder-containing serum group (P<0.05), while the protein expression of HIF-1α was decreased significantly in the 20% decoction-containing serum group (P<0.05). CONCLUSIONS Sanchong tongluo sanjie formula can inhibit the proliferation, invasion and metastasis of Lewis lung cancer cells while promoting their apoptosis. The mechanism of action may be related to regulating the PHD2/HIF-1α signaling pathway. Furthermore, the powder demonstrates superior efficacy compared to the decoction, suggesting that they may possess different mechanisms of action.
10.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.


Result Analysis
Print
Save
E-mail